HashiCorp Certified Terraform Associate Learning Path

If you are working on an multi-cloud environment and focusing on automation, you would surely have been using Terraform or considered at some point of time. I have been using Terraform for over two years now for provisioning infrastructure on AWS, GCP and AliCloud right through development to production and it has been a wonderful DevOps journey and It was good to validate the Terraform skills through the Terraform Associate certification.

Terraform is for Cloud Engineers specializing in operations, IT, or development who know the basic concepts and skills associated with open source HashiCorp Terraform.

HashiCorp Certified Terraform Associate Exam Summary

  • HashiCorp Certified Terraform Associate exam focuses on Terraform as a Infrastructure as a Code tool
  • HashiCorp Certified Terraform Associate exam has 57 questions with a time limit of 60 minutes
  • Exam has a multi answer, multiple choice, fill in the blanks and True/False type of questions
  • Questions and answer options are pretty short and if you have experience on Terraform they are pretty easy and the time if more than sufficient.

HashiCorp Certified Terraform Associate Exam Topic Summary

Refer Terraform Cheat Sheet for details

Understand Infrastructure as Code (IaC) concepts

  • Explain what IaC is
    • Infrastructure is described using a high-level configuration syntax
    • IaC allows Infrastructure to be versioned and treated as you would any other code.
    • Infrastructure can be shared and re-used.
  • Describe advantages of IaC patterns
    • makes Infrastructure more reliable
    • makes Infrastructure more manageable
    • makes Infrastructure more automated and less error prone

Understand Terraform’s purpose (vs other IaC)

  • Explain multi-cloud and provider-agnostic benefits
    • using multi-cloud setup increases fault tolerance and reduces dependency on a single Cloud
    • Terraform provides a cloud-agnostic framework and allows a single configuration to be used to manage multiple providers, and to even handle cross-cloud dependencies.
    • Terraform simplifies management and orchestration, helping operators build large-scale multi-cloud infrastructures.
  • Explain the benefits of state
    • State is a necessary requirement for Terraform to function.
    • Terraform requires some sort of database to map Terraform config to the real world.
    • Terraform uses its own state structure for mapping configuration to resources in the real world
    • Terraform state helps
      • track metadata such as resource dependencies.
      • provides performance as it stores a cache of the attribute values for all resources in the state
      • aids syncing when using in team with multiple users

Understand Terraform basics

  • Handle Terraform and provider installation and versioning
    • Providers provide abstraction above the upstream API and is responsible for understanding API interactions and exposing resources.
    • Terraform configurations must declare which providers they require, so that Terraform can install and use them
    • Provider requirements are declared in a required_providers block.
  • Describe plugin based architecture
    • Terraform relies on plugins called “providers” to interact with remote systems.
  • Demonstrate using multiple providers
    • supports multiple provider instances using alias for e.g. multiple aws provides with different region
  • Describe how Terraform finds and fetches providers
    • Terraform finds and installs providers when initializing a working directory. It can automatically download providers from a Terraform registry, or load them from a local mirror or cache.
    • Each Terraform module must declare which providers it requires, so that Terraform can install and use them.
  • Explain when to use and not use provisioners and when to use local-exec or remote-exec
    • Terraform provides local-exec and remote-exec to execute tasks not provided by Terraform
      • local exec executes code on the machine running terraform
      • remote exec executes on the resource provisioned and supports ssh and winrm
    • Provisioners should only be used as a last resort.
    • are defined within the resource block.
    • support types – Create and Destroy
      • if creation time fails, resource is tainted if provisioning failed, by default. (next apply it will be re-created)
      • behavior can be overridden by setting the on_failure to continue, which means ignore and continue
      • for destroy, if it fails – resources are not removed

Use the Terraform CLI (outside of core workflow)

  • Given a scenario: choose when to use terraform fmt to format code
    • terraform fmt helps format code to lint into a standard format. It usually aligns the spaces and matches the =
  • Given a scenario: choose when to use terraform taint to taint Terraform resources
    • terraform taint marks a Terraform-managed resource as tainted, forcing it to be destroyed and recreated on the next apply.
    • will not modify infrastructure, but does modify the state file in order to mark a resource as tainted.
    • Infrastructure and state are changed in next apply.
    • can be used to taint a resource within a module
  • Given a scenario: choose when to use terraform import to import existing infrastructure into your Terraform state
    • terraform import helps import already-existing external resources, not managed by Terraform, into Terraform state and allow it to manage those resources
    • Terraform is not able to auto-generate configurations for those imported modules, for now, and requires you to first write the resource definition in Terraform and then import this resource
  • Given a scenario: choose when to use terraform workspace to create workspaces
    • Terraform workspace helps manage multiple distinct sets of infrastructure resources or environments with the same code.
    • state files for each workspace are stored in the directory terraform.tfstate.d
    • terraform workspace new dev creates a new workspace with name dev and switches to it as well
    • does not provide strong separation as it uses the same backend
  • Given a scenario: choose when to use terraform state to view Terraform state
    • state helps keep track of the infrastructure Terraform manages
    • stored locally in the terraform.tfstate
    • recommended not to edit the state manually
    • Use terraform state command
      • mv – to move/rename modules
      • rm – to safely remove resource from the state. (destroy/retain like)
      • pull – to observe current remote state
      • list & show – to write/debug modules
  • Given a scenario: choose when to enable verbose logging and what the outcome/value is
    • debugging can be controlled using TF_LOG , which can be configured for different levels TRACE, DEBUG, INFO, WARN or ERROR, with TRACE being the more verbose.
    • logs path can be controlled TF_LOG_PATHTF_LOG needs to be specified.

Interact with Terraform modules

  • Contrast module source options
    • Terraform Module Registry allows you to browse, filter and search for modules
  • Interact with module inputs and outputs
    • Input variables serve as parameters for a Terraform module, allowing aspects of the module to be customized without altering the module’s own source code, and allowing modules to be shared between different configurations.
    • Resources defined in a module are encapsulated, so the calling module cannot access their attributes directly.
    • Child module can declare output values to selectively export certain values to be accessed by the calling module module.module_name.output_value
  • Describe variable scope within modules/child modules
    • Modules are called from within other modules using module blocks
    • All modules require a source argument, which is a meta-argument defined by Terraform
    • To call a module means to include the contents of that module into the configuration with specific values for its input variables.
  • Discover modules from the public Terraform Module Registry
    • Terraform Module Registry allows you to browse, filter and search for modules
  • Defining module version
    • must be on GitHub and must be a public repo, if using public registry.
    • must be named terraform-<PROVIDER>-<NAME>, where <NAME> reflects the type of infrastructure the module manages and <PROVIDER> is the main provider where it creates that infrastructure. for e.g. terraform-google-vault or terraform-aws-ec2-instance.
    • must maintain x.y.z tags for releases to identify module versions. and can optionally be prefixed with a v for example, v1.0.4 and 0.9.2. Tags that don’t look like version numbers are ignored.
    • must maintain a Standard module structure, which allows the registry to inspect the module and generate documentation, track resource usage, parse submodules and examples, and more.

Navigate Terraform workflow

  • Describe Terraform workflow ( Write -> Plan -> Create )
    • Core Terraform workflow has three steps:
      • Write – Author infrastructure as code.
      • Plan – Preview changes before applying.
      • Apply – Provision reproducible infrastructure.
  • Initialize a Terraform working directory terraform init
    • initializes a working directory containing Terraform configuration files.
    • performs backend initialization, modules and plugins installation.
    • plugins are downloaded in the sub-directory of the present working directory at the path of .terraform/plugins
    • does not delete the existing configuration or state
  • Validate a Terraform configuration terraform validate
    • validates the configuration files in a directory, referring only to the configuration and not accessing any remote services such as remote state, provider APIs, etc.
    • verifies whether a configuration is syntactically valid and internally consistent, regardless of any provided variables or existing state.
    • useful for general verification of reusable modules, including the correctness of attribute names and value types.
  • Generate and review an execution plan for Terraform terraform plan
    • terraform plan create a execution plan as it traverses each vertex and requests each provider using parallelism
    • calculates the difference between the last-known state and the current state and presents this difference as the output of the terraform plan operation to user in their terminal
    • does not modify the infrastructure or state.
    • allows a user to see which actions Terraform will perform prior to making any changes to reach the desired state
    • performs refresh for each resource and might hit rate limiting issues as it calls provider APIs
    • all resources refresh can be disabled or avoided using
      • -refresh=false or
      • target=xxxx or
      • break resources into different directories.
  • Execute changes to infrastructure with Terraform terraform apply
    • will always ask for confirmation before executing unless passed the -auto-approve flag.
    • if a resource successfully creates but fails during provisioning, Terraform will error and mark the resource as “tainted”. Terraform does not roll back the changes
  • Destroy Terraform managed infrastructure terraform destroy
    • will always ask for confirmation before executing unless passed the -auto-approve flag.

Implement and maintain state

  • Describe default local backend
    • A “backend” in Terraform determines how state is loaded and how an operation such as apply is executed. This abstraction enables non-local file state storage, remote execution, etc.
    • determines how state is loaded and how an operation such as apply is executed
    • is responsible for storing state and providing an API for optional state locking
    • needs to be initialized
    • helps
      • collaboration and working as a team, with the state maintained remotely and state locking
      • can provide enhanced security for sensitive data
      • support remote operations
    • local (default) backend stores state in a local JSON file on disk
  • Outline state locking
    • happens for all operations that could write state, if supported by backend for e.g. S3 with DynamoDB, Consul etc.
    • prevents others from acquiring the lock & potentially corrupting the state
    • use force-unlock command to manually unlock the state if unlocking failed
    • backends which support state locking are
      • azurerm
      • Hashicorp consul
      • Tencent Cloud Object Storage (COS)
      • etcdv3
      • Google Cloud Storage GCS
      • HTTP endpoints
      • Kubernetes Secret with locking done using a Lease resource
      • AliCloud Object Storage OSS with locking via TableStore
      • PostgreSQL
      • AWS S3 with locking via DynamoDB
      • Terraform Enterprise
    • Backends which do not support state locking are
      • artifactory
      • etcd
  • Handle backend authentication methods
    • every remote backend support different authentication mechanism and can be configured with the backend configuration
  • Describe remote state storage mechanisms and supported standard backends
    • remote backend stores state remotely like S3, OSS, GCS, Consul and support features like remote operation, state locking, encryption, versioning etc.
    • github is not a supported backend type.
  • Describe effect of Terraform refresh on state
    • terraform refreshis used to reconcile the state Terraform knows about (via its state file) with the real-world infrastructure.
    • can be used to detect any drift from the last-known state, and to update the state file.
    • does not modify infrastructure but does modify the state file.
  • Describe backend block in configuration and best practices for partial configurations
    • Backend configuration doesn’t support interpolations.
    • supports partial configuration with remaining configuration arguments provided as part of the initialization process
    • if switching the backed for the first time setup, Terraform provides a migration option
  • Understand secret management in state files
    • terraform state command is used for advanced state management
    • Terraform has no mechanism to redact or protect secrets that are returned via data sources, so secrets read via this provider will be persisted into the Terraform state, into any plan files, and in some cases in the console output produced while planning and applying.
    • can be protected accordingly either by using Vault and remote backends with encryption and proper access control

Read, generate, and modify configuration

  • Demonstrate use of variables and outputs
    • Variables
      • serve as parameters for a Terraform module and
      • act like function arguments
      • count is a reserved word and cannot be used as variable name
    • Output
      • are like function return values.
      • can be marked sensitive which prevents showing its value in the list of outputs. However, they are stored in the state as plain text.
  • Describe secure secret injection best practice
  • Understand the use of collection and structural types
    • supports primitive data types of
      • string, number and bool
      • automatically convert number and bool values to string values
    • supports complex data types of
      • list – sequence of values identified by consecutive whole numbers starting with zero.
      • map – collection of values where each is identified by a string label
      • set – collection of unique values that do not have any secondary identifiers or ordering.
    • supports structural data types of
      • object – a collection of named attributes with their own type
      • tuple – a sequence of elements identified by consecutive whole numbers starting with zero, where each element has its own type.
  • Create and differentiate resource and data configuration
    • Resources describe one or more infrastructure objects, such as virtual networks, instances, or higher-level components such as DNS records.
    • Data sources allow data to be fetched or computed for use elsewhere in Terraform configuration. Use of data sources allows a Terraform configuration to make use of information defined outside of Terraform, or defined by another separate Terraform configuration.
  • Use resource addressing and resource parameters to connect resources together
  • Use Terraform built-in functions to write configuration
    • lookup retrieves the value of a single element from a map, given its key. If the given key does not exist, a the given default value is returned instead. lookup(map, key, default)
    • zipmap constructs a map from a list of keys and a corresponding list of values. A map is denoted by { } whereas a list is donated by [ ] for e.g. zipmap(["a", "b"], [1, 2]) results into {"a" = 1, "b" = 2}
  • Configure resource using a dynamic block
    • dynamic acts much like a for expression, but produces nested blocks instead of a complex typed value. It iterates over a given complex value, and generates a nested block for each element of that complex value.
    • Overuse of dynamic block is not recommended as it makes the code hard to understand and debug
  • Describe built-in dependency management (order of execution based)
    • Terraform analyses any expressions within a resource block to find references to other objects and treats those references as implicit ordering requirements when creating, updating, or destroying resources.
    • Explicit dependency can be defined using the depends_on attribute where dependencies between resources that are not visible
  • support comments using #, // and /* */

Understand Terraform Cloud and Enterprise capabilities

  • Describe the benefits of Sentinel, registry, and workspaces
    • Terraform Cloud provides private module registry for storing modules private to be used within the organization
  • Differentiate OSS and TFE workspaces
  • Summarize features of Terraform Cloud
    • Terraform Enterprise currently supports running under the following operating systems for a Clustered deployment:
      • Ubuntu 16.04.3 – 16.04.5 / 18.04
      • Red Hat Enterprise Linux 7.4 through 7.7
      • CentOS 7.4 – 7.7
      • Amazon Linux
      • Oracle Linux
      • Clusters currently don’t support other Linux variants.
    • Terraform Enterprise install that is provisioned on a network that does not have Internet access is generally known as an air-gapped install.

HashiCorp Certified Terraform Associate Exam Resources

Terraform Cheat Sheet

  • An open source provisioning declarative tool that based on Infrastructure as a Code paradigm
  • designed on immutable infrastructure principles
  • Written in Golang and uses own syntax – HCL (Hashicorp Configuration Language), but also supports JSON
  • Helps to evolve the infrastructure, safely and predictably
  • Applies Graph Theory to IaaC and provides Automation, Versioning and Reusability
  • Terraform is a multipurpose composition tool:
    ○ Composes multiple tiers (SaaS/PaaS/IaaS)
    ○ A plugin-based architecture model
  • Terraform is not a cloud agnostic tool. It embraces all major Cloud Providers and provides common language to orchestrate the infrastructure resources
  • Terraform is not a configuration management tool and other tools like chef, ansible exists in the market.

Terraform Architecture

Terraform Architecture

Terraform Providers (Plugins)

  • provide abstraction above the upstream API and is responsible for understanding API interactions and exposing resources.
  • Invoke only upstream APIs for the basic CRUD operations
  • Providers are unaware of anything related to configuration loading, graph
    theory, etc.
  • supports multiple provider instances using alias for e.g. multiple aws provides with different region
  • can be integrated with any API using providers framework
  • Most providers configure a specific infrastructure platform (either cloud or self-hosted).
  • can also offer local utilities for tasks like generating random numbers for unique resource names.

Terraform Provisioners

  • run code locally or remotely on resource creation
    • local exec executes code on the machine running terraform
    • remote exec
      • runs on the provisioned resource
      • supports ssh and winrm
    • requires inline list of commands
  • should be used as a last resort
  • are defined within the resource block.
  • support types – Create and Destroy
    • if creation time fails, resource is tainted if provisioning failed, by default. (next apply it will be re-created)
    • behavior can be overridden by setting the on_failure to continue, which means ignore and continue
    • for destroy, if it fails – resources are not removed

Terraform Workspaces

  • helps manage multiple distinct sets of infrastructure resources or environments with the same code.
  • just need to create needed workspace and use them, instead of creating a directory for each environment to manage
  • state files for each workspace are stored in the directory terraform.tfstate.d
  • terraform workspace new dev creates a new workspace and switches to it as well
  • terraform workspace select dev helps select workspace
  • terraform workspace list lists the workspaces and shows the current active one with *
  • does not provide strong separation as it uses the same backend

Terraform Workflow

Terraform Workflow

init

  • initializes a working directory containing Terraform configuration files.
  • performs
    • backend initialization , storage for terraform state file.
    • modules installation, downloaded from terraform registry to local path
    • provider(s) plugins installation, the plugins are downloaded in the sub-directory of the present working directory at the path of .terraform/plugins
  • supports -upgrade to update all previously installed plugins to the newest version that complies with the configuration’s version constraints
  • is safe to run multiple times, to bring the working directory up to date with changes in the configuration
  • does not delete the existing configuration or state

validate

  • validates syntactically for format and correctness.
  • is used to validate/check the syntax of the Terraform files.
  • verifies whether a configuration is syntactically valid and internally consistent, regardless of any provided variables or existing state.
  • A syntax check is done on all the terraform files in the directory, and will display an error if any of the files doesn’t validate.

plan

  • create a execution plan
  • traverses each vertex and requests each provider using parallelism
  • calculates the difference between the last-known state and
    the current state and presents this difference as the output of the terraform plan operation to user in their terminal
  • does not modify the infrastructure or state.
  • allows a user to see which actions Terraform will perform prior to making any changes to reach the desired state
  • will scan all *.tf  files in the directory and create the plan
  • will perform refresh for each resource and might hit rate limiting issues as it calls provider APIs
  • all resources refresh can be disabled or avoided using
    • -refresh=false or
    • target=xxxx or
    • break resources into different directories.
  • supports -out to save the plan

apply

  • apply changes to reach the desired state.
  • scans the current directory for the configuration and applies the changes appropriately.
  • can be provided with a explicit plan, saved as out from terraform plan
  • If no explicit plan file is given on the command line, terraform apply will create a new plan automatically and prompt for approval to apply it
  • will modify the infrastructure and the state.
  • if a resource successfully creates but fails during provisioning,
    • Terraform will error and mark the resource as “tainted”.
    • A resource that is tainted has been physically created, but can’t be considered safe to use since provisioning failed.
    • Terraform also does not automatically roll back and destroy the resource during the apply when the failure happens, because that would go against the execution plan: the execution plan would’ve said a resource will be created, but does not say it will ever be deleted.
  • does not import any resource.
  • supports -auto-approve to apply the changes without asking for a confirmation
  • supports -target to apply a specific module

refresh

  • used to reconcile the state Terraform knows about (via its state file) with the real-world infrastructure
  • does not modify infrastructure, but does modify the state file

destroy

  • destroy the infrastructure and all resources
  • modifies both state and infrastructure
  • terraform destroy -target can be used to destroy targeted resources
  • terraform plan -destroy allows creation of destroy plan

import

  • helps import already-existing external resources, not managed by Terraform, into Terraform state and allow it to manage those resources
  • Terraform is not able to auto-generate configurations for those imported modules, for now, and requires you to first write the resource definition in Terraform and then import this resource

taint

  • marks a Terraform-managed resource as tainted, forcing it to be destroyed and recreated on the next apply.
  • will not modify infrastructure, but does modify the state file in order to mark a resource as tainted. Infrastructure and state are changed in next apply.
  • can be used to taint a resource within a module

fmt

  • format to lint the code into a standard format

console

  • command provides an interactive console for evaluating expressions.

Terraform Modules

  • enables code reuse
  • supports versioning to maintain compatibility
  • stores code remotely
  • enables easier testing
  • enables encapsulation with all the separate resources under one configuration block
  • modules can be nested inside other modules, allowing you to quickly spin up whole separate environments.
  • can be referred using source attribute
  • supports Local and Remote modules
    • Local modules are stored alongside the Terraform configuration (in a separate directory, outside of each environment but in the same repository) with source path ./ or ../
    • Remote modules are stored externally in a separate repository, and supports versioning
  • supports following backends
    • Local paths
    • Terraform Registry
    • GitHub
    • Bitbucket
    • Generic Git, Mercurial repositories
    • HTTP URLs
    • S3 buckets
    • GCS buckets
  • Module requirements
    • must be on GitHub and must be a public repo, if using public registry.
    • must be named terraform-<PROVIDER>-<NAME>, where <NAME> reflects the type of infrastructure the module manages and <PROVIDER> is the main provider where it creates that infrastructure. for e.g. terraform-google-vault or terraform-aws-ec2-instance.
    • must maintain x.y.z tags for releases to identify module versions. Release tag names must be a semantic version, which can optionally be prefixed with a v for example, v1.0.4 and 0.9.2. Tags that don’t look like version numbers are ignored.
    • must maintain a Standard module structure, which allows the registry to inspect the module and generate documentation, track resource usage, parse submodules and examples, and more.

Terraform Read and write configuration

terraform_sample

  • Resources
    • resource are the most important element in the Terraform language that describes one or more infrastructure objects, such as compute instances etc
    • resource type and local name together serve as an identifier for a given resource and must be unique within a module for e.g.  aws_instance.local_name
  • Data Sources
    • data allow data to be fetched or computed for use elsewhere in Terraform configuration
    • allows a Terraform configuration to make use of information defined outside of Terraform, or defined by another separate Terraform configuration
  • Variables
    • variable serve as parameters for a Terraform module and act like function arguments
    • allows aspects of the module to be customized without altering the module’s own source code, and allowing modules to be shared between different configurations
    • can be defined through multiple ways
      • command line for e.g.-var="image_id=ami-abc123"
      • variable definition files .tfvars or .tfvars.json. By default, terraform automatically loads
        • Files named exactly terraform.tfvars or terraform.tfvars.json.
        • Any files with names ending in .auto.tfvars or .auto.tfvars.json
        • file can also be passed with -var-file
      • environment variables can be used to set variables using the format TF_VAR_name
      • Environment variables
      • terraform.tfvars file, if present.
      • terraform.tfvars.json file, if present.
      • Any *.auto.tfvars or *.auto.tfvars.json files, processed in lexical order of their filenames.
      • Any -var and -var-file options on the command line, in the order they are provided.Terraform loads variables in the following order, with later sources taking precedence over earlier ones:
  • Local Values
    • locals assigns a name to an expression, allowing it to be used multiple times within a module without repeating it.
    • are like a function’s temporary local variables.
    • helps to avoid repeating the same values or expressions multiple times in a configuration.
  • Output
    • are like function return values.
    • output can be marked as containing sensitive material using the optional sensitive argument, which prevents Terraform from showing its value in the list of outputs. However, they are still stored in the state as plain text.
    • In a parent module, outputs of child modules are available in expressions as module.<MODULE NAME>.<OUTPUT NAME>.
  • Named Values
    • is an expression that references the associated value for e.g. aws_instance.local_name, data.aws_ami.centos, var.instance_type etc.
    • support Local named values for e.g count.index
  • Dependencies
    • identifies implicit dependencies as Terraform automatically infers when one resource depends on another by studying the resource attributes used in interpolation expressions for e.g aws_eip on resource `aws_instance`
    • explicit dependencies can be defined using depends_on where dependencies between resources that are not visible to Terraform
  • Data Types
    • supports primitive data types of
      • string, number and bool
      • Terraform language will automatically convert number and bool values to string values when needed
    • supports complex data types of
      • list – a sequence of values identified by consecutive whole numbers starting with zero.
      • map – a collection of values where each is identified by a string label.
      • set –  a collection of unique values that do not have any secondary identifiers or ordering.
    • supports structural data types of
      • object – a collection of named attributes that each have their own type
      • tuple – a sequence of elements identified by consecutive whole numbers starting with zero, where each element has its own type.
  • Built-in Functions
    • includes a number of built-in functions that can be called from within expressions to transform and combine values for e.g. min, max, file, concat, element, index, lookup etc.
    • does not support user-defined functions
  • Dynamic Blocks
    • acts much like a for expression, but produces nested blocks instead of a complex typed value. It iterates over a given complex value, and generates a nested block for each element of that complex value.
  • Terraform Comments
    • supports three different syntaxes for comments:
      • #
      • //
      • /* and */

Terraform Backends

  • determines how state is loaded and how an operation such as apply is executed
  • are responsible for storing state and providing an API for optional state locking
  • needs to be initialized
  • if switching the backed for the first time setup, Terraform provides a migration option
  • helps
    • collaboration and working as a team, with the state maintained remotely and state locking
    • can provide enhanced security for sensitive data
    • support remote operations
  • supports local vs remote backends
    • local (default) backend stores state in a local JSON file on disk
    • remote backend stores state remotely like S3, OSS, GCS, Consul and support features like remote operation, state locking, encryption, versioning etc.
  • supports partial configuration with remaining configuration arguments provided as part of the initialization process
  • Backend configuration doesn’t support interpolations.
  • GitHub is not the supported backend type in Terraform.

Terraform State Management

  • state helps keep track of the infrastructure Terraform manages
  • stored locally in the terraform.tfstate
  • recommended not to edit the state manually
  • Use terraform state command
    • mv – to move/rename modules
    • rm – to safely remove resource from the state. (destroy/retain like)
    • pull – to observe current remote state
    • list & show – to write/debug modules

State Locking

  • happens for all operations that could write state, if supported by backend
  • prevents others from acquiring the lock & potentially corrupting the state
  • backends which support state locking are
    • azurerm
    • Hashicorp consul
    • Tencent Cloud Object Storage (COS)
    • etcdv3
    • Google Cloud Storage GCS
    • HTTP endpoints
    • Kubernetes Secret with locking done using a Lease resource
    • AliCloud Object Storage OSS with locking via TableStore
    • PostgreSQL
    • AWS S3 with locking via DynamoDB
    • Terraform Enterprise
  • Backends which do not support state locking are
    • artifactory
    • etcd
  • can be disabled for most commands with the -lock flag
  • use force-unlock command to manually unlock the state if unlocking failed

State Security

  • can contain sensitive data, depending on the resources in use for e.g passwords and keys
  • using local state, data is stored in plain-text JSON files
  • using remote state, state is held in memory when used by Terraform. It may be encrypted at rest, if supported by backend for e.g. S3, OSS

Terraform Logging

  • debugging can be controlled using TF_LOG , which can be configured for different levels TRACE, DEBUG, INFO, WARN or ERROR, with TRACE being the more verbose.
  • logs path can be controlled TF_LOG_PATHTF_LOG needs to be specified.

Terraform Cloud and Terraform Enterprise

  • Terraform Cloud provides Cloud Infrastructure Automation as a Service. It is offered as a multi-tenant SaaS platform and is designed to suit the needs of smaller teams and organizations. Its smaller plans default to one run at a time, which prevents users from executing multiple runs concurrently.
  • Terraform Enterprise is a private install for organizations who prefer to self-manage. It is designed to suit the needs of organizations with specific requirements for security, compliance and custom operations.
  • Terraform Cloud provides features
    • Remote Terraform Execution – supports Remote Operations for Remote Terraform execution which helps provide consistency and visibility for critical provisioning operations.
    • Workspaces – organizes infrastructure with workspaces instead of directories. Each workspace contains everything necessary to manage a given collection of infrastructure, and Terraform uses that content whenever it executes in the context of that workspace.
    • Remote State Management – acts as a remote backend for the Terraform state. State storage is tied to workspaces, which helps keep state associated with the configuration that created it.
    • Version Control Integration – is designed to work directly with the version control system (VCS) provider.
    • Private Module Registry – provides a private and central library of versioned & validated modules to be used within the organization
    • Team based Permission System – can define groups of users that match the organization’s real-world teams and assign them only the permissions they need
    • Sentinel Policies – embeds the Sentinel policy-as-code framework, which lets you define and enforce granular policies for how the organization provisions infrastructure. Helps eliminate provisioned resources that don’t follow security, compliance, or operational policies.
    • Cost Estimation – can display an estimate of its total cost, as well as any change in cost caused by the proposed updates
    • Security – encrypts state at rest and protects it with TLS in transit.
  • Terraform Enterprise features
    • includes all the Terraform Cloud features with
    • Audit – supports detailed audit logging and tracks the identity of the user requesting state and maintains a history of state changes.
    • SSO/SAML – SAML for SSO provides the ability to govern user access to your applications.
  • Terraform Enterprise currently supports running under the following operating systems for a Clustered deployment:
    • Ubuntu 16.04.3 – 16.04.5 / 18.04
    • Red Hat Enterprise Linux 7.4 through 7.7
    • CentOS 7.4 – 7.7
    • Amazon Linux
    • Oracle Linux
    • Clusters currently don’t support other Linux variants.
  • Terraform Cloud currently supports following VCS Provider
    • GitHub.com
    • GitHub.com (OAuth)
    • GitHub Enterprise
    • GitLab.com
    • GitLab EE and CE
    • Bitbucket Cloud
    • Bitbucket Server
    • Azure DevOps Server
    • Azure DevOps Services
  • A Terraform Enterprise install that is provisioned on a network that does not have Internet access is generally known as an air-gapped install. These types of installs require you to pull updates, providers, etc. from external sources vs. being able to download them directly.

AWS Certified Solutions Architect – Associate SAA-C02 Exam Learning Path

SAA-C02 Certification

AWS Certified Solutions Architect – Associate SAA-C02 Exam Learning Path

AWS Solutions Architect – Associate SAA-C02 exam is the latest AWS exam that has replaced the previous SAA-C01 certification exam. It basically validates the ability to effectively demonstrate knowledge of how to architect and deploy secure and robust applications on AWS technologies

  • Define a solution using architectural design principles based on customer requirements.
  • Provide implementation guidance based on best practices to the organization throughout the life cycle of the project.

Refer AWS_Solution_Architect_-_Associate_SAA-C02_Exam_Blue_Print

AWS Solutions Architect – Associate SAA-C02 Exam Summary

  • SAA-C02 exam consists of 65 questions in 130 minutes, and the time is more than sufficient if you are well prepared.
  • SAA-C02 Exam covers the architecture aspects in deep, so you must be able to visualize the architecture, even draw them out in the exam just to understand how it would work and how different services relate.
  • AWS has updated the exam concepts from the focus being on individual services to more building of scalable, highly available, cost-effective, performant, resilient.
  • If you had been preparing for the SAA-C01 –
    • SAA-C02 is pretty much similar to SAA-C01 except the operational effective architecture domain has been dropped
    • Although, most of the services and concepts covered by the SAA-C01 are the same. There are few new additions like Aurora Serverless, AWS Global Accelerator, FSx for Windows, FSx for Lustre
  • AWS exams are available online, and I took the online one. Just make sure you have a proper place to take the exam with no disturbance and nothing around you.
  • Also, if you are taking the AWS Online exam for the first time try to join atleast 30 minutes before the actual time.

AWS Solutions Architect – Associate SAA-C02 Exam Topics

Make sure you go through all the topics and focus on hints in italics

Networking

  • Be sure to create VPC from scratch. This is mandatory.
    • Create VPC and understand whats an CIDR and addressing patterns
    • Create public and private subnets, configure proper routes, security groups, NACLs. (hint: Subnets are public or private depending on whether they can route traffic directly through Internet gateway)
    • Create Bastion for communication with instances
    • Create NAT Gateway or Instances for instances in private subnets to interact with internet
    • Create two tier architecture with application in public and database in private subnets
    • Create three tier architecture with web servers in public, application and database servers in private. (hint: focus on security group configuration with least privilege)
    • Make sure to understand how the communication happens between Internet, Public subnets, Private subnets, NAT, Bastion etc.
  • Understand difference between Security Groups and NACLs (hint: Security Groups are Stateful vs NACLs are stateless. Also only NACLs provide an ability to deny or block IPs)
  • Understand VPC endpoints and what services it can help interact (hint: VPC Endpoints routes traffic internally without Internet)
    • VPC Gateway Endpoints supports S3 and DynamoDB.
    • VPC Interface Endpoints OR Private Links supports others
  • Understand difference between NAT Gateway and NAT Instance (hint: NAT Gateway is AWS managed and is scalable and highly available)
  • Understand how NAT high availability can be achieved (hint: provision NAT in each AZ and route traffic from subnets within that AZ through that NAT Gateway)
  • Understand VPN and Direct Connect for on-premises to AWS connectivity
    • VPN provides quick connectivity, cost-effective, secure channel, however routes through internet and does not provide consistent throughput
    • Direct Connect provides consistent dedicated throughput without Internet, however requires time to setup and is not cost-effective
  • Understand Data Migration techniques
    • Choose Snowball vs Snowmobile vs Direct Connect vs VPN depending on the bandwidth available, data transfer needed, time available, encryption requirement, one-time or continuous requirement
    • Snowball, SnowMobile are for one-time data, cost-effective, quick and ideal for huge data transfer
    • Direct Connect, VPN are ideal for continuous or frequent data transfers
  • Understand CloudFront as CDN and the static and dynamic caching it provides, what can be its origin (hint: CloudFront can point to on-premises sources and its usecases with S3 to reduce load and cost)
  • Understand Route 53 for routing
    • Understand Route 53 health checks and failover routing
    • Understand  Route 53 Routing Policies it provides and their use cases mainly for high availability (hint: focus on weighted, latency, geolocation, failover routing)
  • Be sure to cover ELB concepts in deep.
    • SAA-C02 focuses on ALB and NLB and does not cover CLB
    • Understand differences between  CLB vs ALB vs NLB
      • ALB is layer 7 while NLB is layer 4
      • ALB provides content based, host based, path based routing
      • ALB provides dynamic port mapping which allows same tasks to be hosted on ECS node
      • NLB provides low latency and ability to scale
      • NLB provides static IP address

Security

  • Understand IAM as a whole
    • Focus on IAM role (hint: can be used for EC2 application access and Cross-account access)
    • Understand IAM identity providers and federation and use cases
    • Understand MFA and how would implement two factor authentication for an application
    • Understand IAM Policies (hint: expect couple of questions with policies defined and you need to select correct statements)
  • Understand encryption services
  • AWS WAF integrates with CloudFront to provide protection against Cross-site scripting (XSS) attacks. It also provide IP blocking and geo-protection.
  • AWS Shield integrates with CloudFront to provide protection against DDoS.
  • Refer Disaster Recovery whitepaper, be sure you know the different recovery types with impact on RTO/RPO.

Storage

  • Understand various storage options S3, EBS, Instance store, EFS, Glacier, FSx and what are the use cases and anti patterns for each
  • Instance Store
    • Understand Instance Store (hint: it is physically attached  to the EC2 instance and provides the lowest latency and highest IOPS)
  • Elastic Block Storage – EBS
    • Understand various EBS volume types and their use cases in terms of IOPS and throughput. SSD for IOPS and HDD for throughput
    • Understand Burst performance and I/O credits to handle occasional peaks
    • Understand EBS Snapshots (hint: backups are automated, snapshots are manual
  • Simple Storage Service – S3
    • Cover S3 in depth
    • Understand S3 storage classes with lifecycle policies
      • Understand the difference between SA Standard vs SA IA vs SA IA One Zone in terms of cost and durability
    • Understand S3 Data Protection (hint: S3 Client side encryption encrypts data before storing it in S3)
    • Understand S3 features including
      • S3 provides a cost effective static website hosting
      • S3 versioning provides protection against accidental overwrites and deletions
      • S3 Pre-Signed URLs for both upload and download provides access without needing AWS credentials
      • S3 CORS allows cross domain calls
      • S3 Transfer Acceleration enables fast, easy, and secure transfers of files over long distances between your client and an S3 bucket.
    • Understand Glacier as an archival storage with various retrieval patterns
    • Glacier Expedited retrieval now allows object retrieval within mins
  • Understand Storage gateway and its different types.
    • Cached Volume Gateway provides access to frequently accessed data, while using AWS as the actual storage
    • Stored Volume gateway uses AWS as a backup, while the data is being stored on-premises as well
    • File Gateway supports SMB protocol
  • Understand FSx easy and cost effective to launch and run popular file systems.
  • Understand the difference between EBS vs S3 vs EFS
    • EFS provides shared volume across multiple EC2 instances, while EBS can be attached to a single volume within the same AZ.
  • Understand the difference between EBS vs Instance Store
  • Would recommend referring Storage Options whitepaper, although a bit dated 90% still holds right

Compute

  • Understand Elastic Cloud Compute – EC2
  • Understand Auto Scaling and ELB, how they work together to provide High Available and Scalable solution. (hint: Span both ELB and Auto Scaling across Multi-AZs to provide High Availability)
  • Understand EC2 Instance Purchase Types – Reserved, Scheduled Reserved, On-demand and Spot and their use cases
    • Choose Reserved Instances for continuous persistent load
    • Choose Scheduled Reserved Instances for load with fixed scheduled and time interval
    • Choose Spot instances for fault tolerant and Spiky loads
    • Reserved instances provides cost benefits for long terms requirements over On-demand instances
    • Spot instances provides cost benefits for temporary fault tolerant spiky load
  • Understand EC2 Placement Groups (hint: Cluster placement groups provide low latency and high throughput communication, while Spread placement group provides high availability)
  • Understand Lambda and serverless architecture, its features and use cases. (hint: Lambda integrated with API Gateway to provide a serverless, highly scalable, cost-effective architecture)
  • Understand ECS with its ability to deploy containers and micro services architecture.
    • ECS role for tasks can be provided through taskRoleArn
    • ALB provides dynamic port mapping to allow multiple same tasks on the same node
  • Know Elastic Beanstalk at a high level, what it provides and its ability to get an application running quickly.

Databases

  • Understand relational and NoSQLs data storage options which include RDS, DynamoDB, Aurora and their use cases
  • RDS
    • Understand RDS features – Read Replicas vs Multi-AZ
      • Read Replicas for scalability, Multi-AZ for High Availability
      • Multi-AZ are regional only
      • Read Replicas can span across regions and can be used for disaster recovery
    • Understand Automated Backups, underlying volume types
  • Aurora
    • Understand Aurora
      • provides multiple read replicas and replicates 6 copies of data across AZs
    • Understand Aurora Serverless provides a highly scalable cost-effective database solution
  • DynamoDB
    • Understand DynamoDB with its low latency performance, key-value store (hint: DynamoDB is not a relational database)
    • DynamoDB DAX provides caching for DynamoDB
    • Understand DynamoDB provisioned throughput for Read/Writes (It is more cover in Developer exam though.)
  • Know ElastiCache use cases, mainly for caching performance

Integration Tools

  • Understand SQS as message queuing service and SNS as pub/sub notification service
  • Understand SQS features like visibility, long poll vs short poll
  • Focus on SQS as a decoupling service
  • Understand SQS Standard vs SQS FIFO difference (hint: FIFO provides exactly once delivery both low throughput)

Analytics

  • Know Redshift as a business intelligence tool
  • Know Kinesis for real time data capture and analytics
  • Atleast know what AWS Glue does, so you can eliminate the answer

Management Tools

  • Understand CloudWatch monitoring to provide operational transparency
  • Know which EC2 metrics it can track. Remember, it cannot track memory and disk space/swap utilization
  • Understand CloudWatch is extendable with custom metrics
  • Understand CloudTrail for Audit
  • Have a basic understanding of CloudFormation, OpsWorks

AWS Solutions Architect – Associate SAA-C02 Exam Resources

AWS Whitepapers & Cheat sheets

AWS Solutions Architect – Associate Exam Domains

Domain 1: Design Resilient Architectures

  1. Design a multi-tier architecture solution
  2. Design highly available and/or fault-tolerant architectures
  3. Design decoupling mechanisms using AWS services
  4. Choose appropriate resilient storage

Domain 2: Define High-Performing Architectures

  1. Identify elastic and scalable compute solutions for a workload
  2. Select high-performing and scalable storage solutions for a workload
  3. Select high-performing networking solutions for a workload
  4. Choose high-performing database solutions for a workload

Domain 3: Specify Secure Applications and Architectures

  1. Design secure access to AWS resources
  2. Design secure application tiers
  3. Select appropriate data security options

Domain 4: Design Cost-Optimized Architectures

  1. Determine how to design cost-optimized storage.
  2. Determine how to design cost-optimized compute.

Google Cloud – Associate Cloud Engineer Certification learning path

Google Cloud Certified - Associate Cloud Engineer

Google Cloud – Associate Cloud Engineer certification exam is basically for one who works day-in day-out with the Google Cloud Services. It targets an Cloud Engineer who deploys applications, monitors operations, and manages enterprise solutions. The exam makes sure it covers gamut of services and concepts. Although, the exam is not that tough and time available of 2 hours a quite plenty, if you well prepared.

Quick summary of the exam

  • Wide range of Google Cloud services and what they actually do. It focuses heavily on IAM, Compute, Storage. There is little bit of Network but hardly any data services.
  • Hands-on is a must. Covers Cloud SDK commands and Console operations that you would use for day-to-day work. If you have not worked on GCP before make sure you do lot of labs else you would be absolute clueless for some of the questions and commands
  • Tests are updated for the latest enhancements. There are no reference of Google Container Engine and everything was Google Kubernetes Engine, covers Cloud Functions, Cloud Spanner.
  • Once again be sure that NO Online Course or Practice tests is going to cover all. I did LinuxAcademy which covered maybe 60-70%, but hands-on or practical knowledge is MUST

The list of topics is quite long, but something that you need to be sure to cover are

  • General Services
    • Billing
      • understand how billing works. Monthly vs Threshold and which has priority
      • how to change a billing account for a project and what roles you need. Hint – Project Owner and Billing Administrator for the billing account
    • Cloud SDK
      • understand gcloud commands esp. when dealing with
        • configurations i.e. gcloud config
          • activate profiles or set project and accounts
        • app engine i.e gcloud iam
          • check roles
        • deployment manager i.e. gcloud deployment-manager
  • Network Services
    • Virtual Private Cloud
      • Create a Custom Virtual Private Cloud (VPC), subnets and host applications within them Hint VPC spans across region
      • Understand how Firewall rules works and how they are configured. Hint – Focus on Network Tags.
      • Understand the concept internal and external IPs and difference between static and ephemeral IPs
    • Load Balancer
  • Identity Services
    • Cloud IAM 
      • provides administrators the ability to manage cloud resources centrally by controlling who can take what action on specific resources.
      • Understand how IAM works and how rules apply esp. the hierarchy from Organization -> Folder -> Project -> Resources
      • Understand the difference between Primitive, Pre-defined and Custom roles and their use cases
      • Need to know and understand the roles for the following services atleast
        • Cloud Storage – Admin vs Creator vs Viewer
        • Compute Engine – Admin vs Instance Admin
        • Spanner – Viewer vs Database User
        • BigQuery – User vs JobUser
      • Know how to copy roles to different projects or organization. Hint – gcloud iam roles copy
      • Know how to use service accounts with applications
  • Compute Services
    • Make sure you know all the compute services Google Compute Engine, Google App Engine and Google Kubernetes Engine, they are heavily covered in the exam.
    • Google Compute Engine
      • Google Compute Engine is the best IaaS option for compute and provides fine grained control
      • Make sure you know how to create a GCE, connect to it using Cloud shell or ssh keys
      • Make sure you know the difference between backups and images and how to create the same
      • Understand how you can recreate instance in different zones and regions
      • Know difference between managed vs unmanaged instance groups and auto-healing feature
      • Understand Preemptible VMs and their use cases.
      • know how to upgrade an instance without downtime. HINT – live migration.
      • In case of any issues or errors, how to debug the same
    • Google App Engine
      • Google App Engine is mainly the best option for PaaS with platforms supported and features provided.
      • Deploy an application with App Engine and understand how versioning and rolling deployments can be done
      • Understand how to keep auto scaling and traffic splitting and migration.
      • Know App Engine is a regional resource and understand the steps to migrate or deploy application to different region and project.
    • Google Kubernetes Engine
      • Google Container Engine is now officially Google Kubernetes Engine and the questions refer to the same
      • Google Kubernetes Engine, powered by the open source container scheduler Kubernetes, enables you to run containers on Google Cloud Platform.
      • Kubernetes Engine takes care of provisioning and maintaining the underlying virtual machine cluster, scaling your application, and operational logistics such as logging, monitoring, and cluster health management.
      • Be sure to Create a Kubernetes Cluster and configure it to host an application
      • Understand how to make the cluster auto repairable and upgradable. Hint – Node auto-upgrades and auto-repairing feature
      • Very important to understand where to use gcloud commands (to create a cluster) and kubectl commands (manage the cluster components)
      • Very important to understand how to increase cluster size and enable autoscaling for the cluster
      • know how to manage secrets like database passwords
  • Storage Services
    • Understand each storage service options and their use cases.
    • Cloud Storage
      • cost-effective object storage for an unstructured data.
      • very important to know the different classes and their use cases esp. Regional and Multi-Regional (frequent access), Nearline (monthly access) and Coldline (yearly access)
      • Understand life cycle management. HINT – Changes are in accordance to object creation date
      • Understand Signed URL to give temporary access and the users do not need to be GCP users
      • Understand permissions – IAM vs ACLs (fine grained control)
    • Relational Databases
      • Know Cloud SQL and Cloud Spanner
      • Cloud SQL
        • is a fully-managed service that provides MySQL and PostgreSQL only.
        • limited to 10TB and is a regional service.
        • know the difference between Failover and Read replicas
        • know how to perform Point-In-Time recovery. Hint – required binary logging and backups
      • Cloud Spanner
        • is a fully managed, mission-critical relational database service.
        • provides a scalable online transaction processing (OLTP) database with high availability and strong consistency at global scale.
        • globally distributed and can scale and handle more than 10TB.
        • not a direct replacement and would need migration
      • There are no direct options for Microsoft SQL Server or Oracle yet.
    • Data Warehousing
      • BigQuery
        • provides scalable, fully managed enterprise data warehouse (EDW) with SQL and fast ad-hoc queries.
        • Remember it is most suitable for historical analysis.
        • know how to perform a preview or dry run. Hint – price is determined by bytes read not bytes returned.
  • Data Services
    • Although there were only a couple of reference of big data services in the exam, it is important to know (DO NOT DEEP DIVE) the Big Data stack (esp. IoT gateway, Pub/Sub, Bigtable vs BigQuery) to understand which service fits the different layers of ingest, store, process, analytics, use
      • Cloud Storage as the medium to store data as data lake
      • Cloud Pub/Sub as the messaging service to capture real time data esp. IoT
      • Cloud Pub/Sub is designed to provide reliable, many-to-many, asynchronous messaging between applications esp. real time IoT data capture
      • Cloud Dataflow to process, transform, transfer data and the key service to integrate store and analytics.
      • Cloud BigQuery for storage and analytics. Remember BigQuery provides the same cost-effective option for storage as Cloud Storage
      • Cloud Dataprep to clean and prepare data. Hint – It can be used anomaly detection.
      • Cloud Dataproc to handle existing Hadoop/Spark jobs. Hint – Use it to replace existing hadoop infra.
      • Cloud Datalab is an interactive tool for exploration, transformation, analysis and visualization of your data on Google Cloud Platform
  • Monitoring
    • Google Stackdriver
      • provides everything from monitoring, alert, error reporting, metrics, diagnostics, debugging, trace.
      • remember audits are mainly checking Stackdriver
  • DevOps services
    • Deployment Manager 
    • Cloud Launcher (Marketplace)
      • provides a way to launch common software packages e.g. Jenkins or WordPress and stacks on Google Compute Engine with just a few clicks like a prepackaged solution.
      • It can help minimize deployment time and can be used without any knowledge about the product

Resources

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Learning Path

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Learning Path

AWS Certified SysOps Administrator – Associate (SOA-C01) exam is the latest AWS exam and has already replaced the old SysOps Administrator – Associate exam from 24th Sept 2018. It basically validates

  • Deploy, manage, and operate scalable, highly available, and fault tolerant systems on AWS
  • Implement and control the flow of data to and from AWS
  • Select the appropriate AWS service based on compute, data, or security requirements
  • Identify appropriate use of AWS operational best practices
  • Estimate AWS usage costs and identify operational cost control mechanisms
  • Migrate on-premises workloads to AWS

Refer AWS Certified SysOps – Associate Exam Guide Sep 18

AWS Certified SysOps Administrator - Associate Content Outline

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Summary

  • AWS Certified SysOps Administrator – Associate exam is quite different from the previous one with more focus on the error handling, deployment, monitoring.
  • AWS Certified SysOps Administrator – Associate exam covers a lot of latest AWS services like ALB, Lambda, AWS Config, AWS Inspector, AWS Shield while focusing majorly on other services like CloudWatch, Metrics from various services, CloudTrail.
  • Be sure to cover the following topics
    •  Monitoring & Management Tools
      • Understand CloudWatch monitoring to provide operational transparency
        • Know which EC2 metrics it can track (disk, network, CPU, status checks) and which would need custom metrics (memory, disk swap, disk storage etc.)
        • Know ELB monitoring
          • Classic Load Balancer metrics SurgeQueueLength and SpilloverCount
          • Reasons for 4XX and 5XX errors
      • Understand CloudTrail for audit and governance
      • Understand AWS Config and its use cases
      • Understand AWS Systems Manager and its various services like parameter store, patch manager
      • Understand AWS Trusted Advisor and what it provides
      • Very important to understand AWS CloudWatch vs AWS CloudTrail vs AWS Config
      • Very important to understand Trust Advisor vs Systems manager vs Inspector
      • Know Personal Health Dashboard & Service Health Dashboard
      • Deployment tools
        • Know AWS OpsWorks and its ability to support chef & puppet
        • Know Elastic Beanstalk and its advantages
        • Understand AWS CloudFormation
          • Know stacks, templates, nested stacks
          • Know how to wait for resources setup to be completed before proceeding esp. cfn-signal
          • Know how to retain resources (RDS, S3), prevent rollback in case of a failure
    • Networking & Content Delivery
      • Understand VPC in depth
        • Understand the difference between
          • Bastion host – allow access to instances in private subnet
          • NAT – route traffic from private subnets to internet
          • NAT instance vs NAT Gateway
          • Internet Gateway – Access to internet
          • Virtual Private Gateway – Connectivity between on-premises and VPC
          • Egress-Only Internet Gateway – relevant to IPv6 only to allow egress traffic from private subnet to internet, without allowing ingress traffic
        • Understand
        • Understand how VPC Peering works and limitations
        • Understand VPC Endpoints and supported services
        • Ability to debug networking issues like EC2 not accessible, EC2 instances not reachable, Instances in subnets not able to communicate with others or Internet.
      • Understand Route 53 and Routing Policies and their use cases
        • Focus on Weighted, Latency routing policies
      • Understand VPN and Direct Connect and their use cases
      • Understand CloudFront and use cases
      • Understand ELB, ALB and NLB and what features they provide like
        • ALB provides content and path routing
        • NLB provides ability to give static IPs to load balancer.
    • Compute
      • Understand EC2 in depth
        • Understand EC2 instance types
        • Understand EC2 purchase options esp. spot instances and improved reserved instances options.
        • Understand how IO Credits work and T2 burstable performance and T2 unlimited
        • Understand EC2 Metadata & Userdata. Whats the use of each? How to look up instance data after it is launched.
        • Understand EC2 Security. 
          • How IAM Role work with EC2 instances
          • IAM Role can now be attached to stopped and runnings instances
        • Understand AMIs and remember they are regional and how can they be shared with others.
        • Troubleshoot issues with launching EC2 esp. RequestLimitExceeded, InstanceLimitExceeded etc.
        • Troubleshoot connectivity, lost ssh keys issues
      • Understand Auto Scaling
      • Understand Lambda and its use cases
      • Understand Lambda with API Gateway
    • Storage
    • Databases
    • Security
      • Understand IAM as a whole
      • Understand KMS for key management and envelope encryption
      • Understand CloudHSM and KMS vs CloudHSM esp. support for symmetric and asymmetric keys
      • Know AWS Inspector and its use cases
      • Know AWS GuardDuty as managed threat detection service. Will help eliminate as the option
      • Know AWS Shield esp. the Shield Advanced option and the features it provides
      • Know WAF as Web Traffic Firewall
      • Know AWS Artifact as on-demand access to compliance reports
    • Integration Tools
      • Understand SQS as message queuing service and SNS as pub/sub notification service
        • Focus on SQS as a decoupling service
        • Understand SQS FIFO, make sure you know the differences between standard and FIFO
      • Understand CloudWatch integration with SNS for notification
    • Cost management

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Resources

AWS Cloud Computing Whitepapers

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Contents

Domain 1: Monitoring and Reporting

  1. Create and maintain metrics and alarms utilizing AWS monitoring services
  1. Recognize and differentiate performance and availability metrics
  2. Perform the steps necessary to remediate based on performance and availability metrics

Domain 2: High Availability

  1. Implement scalability and elasticity based on use case
  2. Recognize and differentiate highly available and resilient environments on AWS

Domain 3: Deployment and Provisioning

  1. Identify and execute steps required to provision cloud resources
  2. Identify and remediate deployment issues

Domain 4: Storage and Data Management

  1. Create and manage data retention
  2. Identify and implement data protection, encryption, and capacity planning needs

Domain 5: Security and Compliance

  1. Implement and manage security policies on AWS
  1. Implement access controls when using AWS
  2. Differentiate between the roles and responsibility within the shared responsibility model

Domain 6: Networking

  1. Apply AWS networking features
  1. Implement connectivity services of AWS
  2. Gather and interpret relevant information for network troubleshooting

Domain 7: Automation and Optimization

  1. Use AWS services and features to manage and assess resource utilization
  2. Employ cost-optimization strategies for efficient resource utilization
  3. Automate manual or repeatable process to minimize management overhead

AWS Certified Developer – Associate DVA-C01 Exam Learning Path

AWS Certified Developer – Associate DVA-C01 Exam Learning Path

AWS Certified Developer – Associate DVA-C01 exam is the latest AWS exam and would replace the old Developer – Associate exam. It basically validates

  • Demonstrate an understanding of core AWS services, uses, and basic AWS architecture best practices.
  • Demonstrate proficiency in developing, deploying, and debugging cloud-based applications using AWS.

Refer AWS Certified Developer – Associate (Released June 2018) Exam Blue Print

AWS Certified Developer - Associate June 2018 Domains

AWS Certified Developer – Associate DVA-C01 Summary

  • AWS Certified Developer – Associate DVA-C01 exam is quite different from the previous one with more focus on the hands-on development and deployment concepts rather then just the architectural concepts
  • AWS Certified Developer – Associate DVA-C01 exam covers a lot of latest AWS services like Lambda, X-Ray while focusing majorly on other services like DynamoDB, Elastic Beanstalk, S3, EC2
  • Be sure to cover the following topics
    • Compute
      • Understand what AWS services you can use to build a serverless architecture?
      • Make sure you know and understand Lambda and serverless architecture, its features and use cases.
      • Know Lambda limits for e.g. execution time, deployable zipped and unzipped package limit
      • Be sure to know how to deploy, package using Lambda.
      • Understand tracing of Lambda functions using X-Ray
      • Understand integration of Lambda with CloudWatch.
      • Understand how to handle multiple releases using Alias
      • Know AWS Step Functions to manage Lambda functions flow
      • Understand Lambda with API Gateway
      • Understand API Gateway stages, ability to cater to different environments for e.g. dev, test, prod
      • Understand EC2 as a whole
      • Understand EC2 Metadata & Userdata. Whats the use of each? How to look up instance data after it is launched.
      • Understand EC2 Security. How IAM Role work with EC2 instances.
      • Understand how does EC2 evaluates the order of credentials, when multiple are provided. Remember the order – Environment variables -> Java system properties -> Default credential profiles file -> ECS container credentials -> Instance Profile credentials
      • Know Elastic Beanstalk at a high level, what it provides and its ability to get an application running quickly
      • Understand Elastic Beanstalk configurations and deployment types with their advantages and disadvantages
    • Databases
      • Understand relational and NoSQLs data storage options which include RDS, DynamoDB and their use cases
      • Understand DynamoDB Secondary Indexes
      • Make sure you understand DynamoDB provisioned throughput for Read/Writes and its calculations
      • Make sure you understand DynamoDB Consistency Model – difference between Strongly Consistent and Eventual Consistency
      • Understand DynamoDB with its low latency performance, DAX
      • Know how to configure fine grained security for DynamoDB table, items, attributes
      • Understand DynamoDB Best Practices regarding
        • table design
        • provisioned throughput
        • Query vs Scan operations
        • improving Scan operation performance
      • Understand RDS features – Read Replicas for scalability, Multi-AZ for High Availability
      • Know ElastiCache use cases, mainly for caching performance
      • Understand ElastiCache Redis vs Memcached
    • Storage
      • Understand S3 storage option
      • Understand S3 Best Practices to improve performance for GET/PUT requests
      • Understand S3 features like different storage classes with lifecycle policies, static website hosting, versioning, Pre-Signed URLs for both upload and download, CORS
    • Security
      • Understand IAM as a whole
      • Focus on IAM role and its use case especially with EC2 instance
      • Know how to test and validate IAM policies
      • Understand IAM identity providers and federation and use cases
      • Understand how AWS Cognito works and what features it provides
      • Understand MFA and How would implement two factor authentication for your application
      • Understand KMS for key management and envelope encryption
      • Know what services support KMS
        • Remember SQS, Kinesis now provides SSE support
      • Focus on S3 with SSE, SSE-C, SSE-KMS. How they work and differ?
      • Know how can you enforce only buckets to only accept encrypted objects
      • Know various KMS encryption options encrypt, reencrypt, generateEncryptedDataKey etc
      • Know how KMS impacts performance of the services
    • Management Tools
      • Understand CloudWatch monitoring to provide operational transparency
      • Know which EC2 metrics it can track.
      • Understand CloudWatch is extendable with custom metrics
      • Understand CloudTrail for Audit
    • Integration Tools
      • Understand SQS as message queuing service and SNS as pub/sub notification service
      • Understand SQS features like visibility, long poll vs short poll
      • Focus on SQS as a decoupling service
      • AWS has released SQS FIFO, make sure you know the differences between standard and FIFO
      • Know the different development and deployment tools like CodeCommit, CodeBuild, CodeDeploy, CodePipeline
    • Networking
      • Does not cover much on networking or designing of networks, but be sure you understand VPC, Subnets, Routes, Security Groups etc.

AWS Certified Developer – Associate DVA-C01 Exam Resources

AWS Cloud Computing Whitepapers

AWS Certified Developer – Associate DVA-C01 Exam Contents

Domain 1: Deployment

  1. Deploy written code in AWS using existing CI/CD pipelines, processes, and patterns.
  1. Deploy applications using Elastic Beanstalk.
  1. Prepare the application deployment package to be deployed to AWS.
  2. Deploy serverless applications.

Domain 2: Security

  1. Make authenticated calls to AWS services.
  1. Implement encryption using AWS services.
  2. Implement application authentication and authorization.

Domain 3: Development with AWS Services

  1. Write code for serverless applications.
  1. Translate functional requirements into application design.
  1. Implement application design into application code.
  2. Write code that interacts with AWS services by using APIs, SDKs, and AWS CLI.

Domain 4: Refactoring

  1. Optimize application to best use AWS services and features.
  2. Migrate existing application code to run on AWS.

Domain 5: Monitoring and Troubleshooting

  1. Write code that can be monitored.
  2. Perform root cause analysis on faults found in testing or production.