AWS Certified Big Data -Speciality (BDS-C00) Exam Learning Path

Clearing the AWS Certified Big Data – Speciality (BDS-C00) was a great feeling. This was my third Speciality certification and in terms of the difficulty level (compared to Network and Security Speciality exams), I would rate it between Network (being the toughest) Security (being the simpler one).

Big Data in itself is a very vast topic and with AWS services, there is lots to cover and know for the exam. If you have worked on Big Data technologies including a bit of Visualization and Machine learning, it would be a great asset to pass this exam.

AWS Certified Big Data – Speciality (BDS-C00) exam basically validates

  • Implement core AWS Big Data services according to basic architectural best practices
  • Design and maintain Big Data
  • Leverage tools to automate Data Analysis

Refer AWS Certified Big Data – Speciality Exam Guide for details

                              AWS Certified Big Data – Speciality Domains

AWS Certified Big Data – Speciality (BDS-C00) Exam Summary

  • AWS Certified Big Data – Speciality exam, as its name suggests, covers a lot of Big Data concepts right from data transfer and collection techniques, storage, pre and post processing, analytics, visualization with the added concepts for data security at each layer.
  • One of the key tactic I followed when solving any AWS Certification exam is to read the question and use paper and pencil to draw a rough architecture and focus on the areas that you need to improve. Trust me, you will be able to eliminate 2 answers for sure and then need to focus on only the other two. Read the other 2 answers to check the difference area and that would help you reach to the right answer or atleast have a 50% chance of getting it right.
  • Be sure to cover the following topics
    • Whitepapers and articles
    • Analytics
      • Make sure you know and cover all the services in depth, as 80% of the exam is focused on these topics
      • Elastic Map Reduce
        • Understand EMR in depth
        • Understand EMRFS (hint: Use Consistent view to make sure S3 objects referred by different applications are in sync)
        • Know EMR Best Practices (hint: start with many small nodes instead on few large nodes)
        • Know Hive can be externally hosted using RDS, Aurora and AWS Glue Data Catalog
        • Know also different technologies
          • Presto is a fast SQL query engine designed for interactive analytic queries over large datasets from multiple sources
          • D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG, and CSS
          • Spark is a distributed processing framework and programming model that helps do machine learning, stream processing, or graph analytics using Amazon EMR clusters
          • Zeppelin/Jupyter as a notebook for interactive data exploration and provides open-source web application that can be used to create and share documents that contain live code, equations, visualizations, and narrative text
          • Phoenix is used for OLTP and operational analytics, allowing you to use standard SQL queries and JDBC APIs to work with an Apache HBase backing store
      • Kinesis
        • Understand Kinesis Data Streams and Kinesis Data Firehose in depth
        • Know Kinesis Data Streams vs Kinesis Firehose
          • Know Kinesis Data Streams is open ended on both producer and consumer. It supports KCL and works with Spark.
          • Know Kineses Firehose is open ended for producer only. Data is stored in S3, Redshift and ElasticSearch.
          • Kinesis Firehose works in batches with minimum 60secs interval.
        • Understand Kinesis Encryption (hint: use server side encryption or encrypt in producer for data streams)
        • Know difference between KPL vs SDK (hint: PutRecords are synchronously, while KPL supports batching)
        • Kinesis Best Practices (hint: increase performance increasing the shards)
      • Know ElasticSearch is a search service which supports indexing, full text search, faceting etc.
      • Redshift
        • Understand Redshift in depth
        • Understand Redshift Advance topics like Workload Management, Distribution Style, Sort key
        • Know Redshift Best Practices w.r.t selection of Distribution style, Sort key, COPY command which allows parallelism
        • Know Redshift views to control access to data.
      • Amazon Machine Learning
      • Know Data Pipeline for data transfer
      • QuickSight
      • Know Glue as the ETL tool
    • Security, Identity & Compliance
    • Management & Governance Tools
      • Understand AWS CloudWatch for Logs and Metrics. Also, CloudWatch Events more real time alerts as compared to CloudTrail
    • Storage
    • Compute
      • Know EC2 access to services using IAM Role and Lambda using Execution role.
      • Lambda esp. how to improve performance batching, breaking functions etc.

AWS Certified Big Data – Speciality (BDS-C00) Exam Resources

AWS Data Transfer Services

AWS Data Transfer Services

  • AWS provides a suite of data transfer services that includes many methods that to migrate your data more effectively.
  • Data Transfer services work both Online and Offline and the usage depends on several factors like the amount of data, the time required, frequency, available bandwidth, and cost.
  • Online data transfer and hybrid cloud storage
    • A network link to the VPC, transfer data to AWS or use S3 for hybrid cloud storage with existing on-premises applications.
    • helps both to lift and shift large datasets once, as well as help you integrate existing process flows like backup and recovery or continuous data streams directly with cloud storage.
  • Offline data migration to S3.
    • use shippable, ruggedized devices are ideal for moving large archives, data lakes, or in situations where bandwidth and data volumes cannot pass over your networks within your desired time frame.

Online data transfer

VPN

  • connect securely between data centers and AWS
  • quick to set up and cost-efficient
  • ideal for small data transfers and connectivity
  • not reliable as still uses shared Internet connection

Direct Connect

  • provides a dedicated physical connection to accelerate network transfers between data centers and AWS
  • provides reliable data transfer
  • ideal for regular large data transfer
  • needs time to setup
  • is not a cost-efficient solution
  • can be secured using VPN over Direct Connect

AWS S3 Transfer Acceleration

  • makes public Internet transfers to S3 faster.
  • helps maximize the available bandwidth regardless of distance or varying Internet weather, and there are no special clients or proprietary network protocols.  Simply change the endpoint you use with your S3 bucket and acceleration is automatically applied.
  • ideal for recurring jobs that travel across the globe, such as media uploads, backups, and local data processing tasks that are regularly sent to a central location

AWS DataSync

  • automates moving data between on-premises storage and S3 or Elastic File System (Amazon EFS).
  • automatically handles many of the tasks related to data transfers that can slow down migrations or burden the IT operations, including running your own instances, handling encryption, managing scripts, network optimization, and data integrity validation.
  • helps transfer data at speeds up to 10 times faster than open-source tools.
  • uses AWS Direct Connect or internet links to AWS and is ideal for one-time data migrations, recurring data processing workflows, and automated replication for data protection and recovery.

Offline data transfer

AWS Snowcone

  • AWS Snowcone is portable, rugged, and secure that provides edge computing and data transfer devices.
  • Snowcone can be used to collect, process, and move data to AWS, either offline by shipping the device or online with AWS DataSync.
  • AWS Snowcone stores data securely in edge locations, and can run edge computing workloads that use AWS IoT Greengrass or EC2 instances.
  • Snowcone devices are small and weigh 4.5 lbs. (2.1 kg), so you can carry one in a backpack or fit it in tight spaces for IoT, vehicular, or even drone use cases.

AWS Snowball

  • AWS Snowball is a data migration and edge computing device that comes in two device options:
    • Compute Optimized
      • Snowball Edge Compute Optimized devices provide 52 vCPUs, 42 terabytes of usable block or object storage, and an optional GPU for use cases such as advanced machine learning and full-motion video analysis in disconnected environments.
    • Storage Optimized.
      • Snowball Edge Storage Optimized devices provide 40 vCPUs of compute capacity coupled with 80 terabytes of usable block or S3-compatible object storage.
      • It is well-suited for local storage and large-scale data transfer.
  • Customers can use these two options for data collection, machine learning and processing, and storage in environments with intermittent connectivity (such as manufacturing, industrial, and transportation) or in extremely remote locations (such as military or maritime operations) before shipping it back to AWS.
  • Snowball devices may also be rack mounted and clustered together to build larger, temporary installations.

AWS Snowball Edge

  • is a petabyte to exabytes scale data transfer device with on-board storage and compute capabilities
  • move large amounts of data into and out of AWS, as a temporary storage tier for large local datasets, or to support local workloads in remote or offline locations.
  • ideal for one time large data transfers with limited network bandwidth, long transfer times, and security concerns
  • is simple, fast, and secure.
  • can be very cost and time efficient for large data transfer

AWS Snowmobile

  • AWS Snowmobile moves up to 100 PB of data in a 45-foot long ruggedized shipping container and is ideal for multi-petabyte or Exabyte-scale digital media migrations and data center shutdowns.
  • A Snowmobile arrives at the customer site and appears as a network-attached data store for more secure, high-speed data transfer.
  • After data is transferred to Snowmobile, it is driven back to an AWS Region where the data is loaded into S3.
  • Snowmobile is tamper-resistant, waterproof, and temperature controlled with multiple layers of logical and physical security – including encryption, fire suppression, dedicated security personnel, GPS tracking, alarm monitoring, 24/7 video surveillance, and an escort security vehicle during transit.

Data Transfer Chart – Bandwidth vs Time

Data Migration Speeds

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. An organization is moving non-business-critical applications to AWS while maintaining a mission critical application in an on-premises data center. An on-premises application must share limited confidential information with the applications in AWS. The Internet performance is unpredictable. Which configuration will ensure continued connectivity between sites MOST securely?
    1. VPN and a cached storage gateway
    2. AWS Snowball Edge
    3. VPN Gateway over AWS Direct Connect
    4. AWS Direct Connect
  2. A company wants to transfer petabyte-scale of data to AWS for their analytics, however are constrained on their internet connectivity? Which AWS service can help them transfer the data quickly?
    1. S3 enhanced uploader
    2. Snowmobile
    3. Snowball
    4. Direct Connect
  3. A company wants to transfer its video library data, which runs in exabytes, to AWS. Which AWS service can help the company transfer the data?
    1. Snowmobile
    2. Snowball
    3. S3 upload
    4. S3 enhanced uploader
  4. You are working with a customer who has 100 TB of archival data that they want to migrate to Amazon Glacier. The customer has a 1-Gbps connection to the Internet. Which service or feature provides the fastest method of getting the data into Amazon Glacier?
    1. Amazon Glacier multipart upload
    2. AWS Storage Gateway
    3. VM Import/Export
    4. AWS Snowball

References

AWS_Cloud_Data_Migration

AWS Redshift Best Practices

AWS Redshift Best Practices

Designing Tables

Distribution Style selection

  • Distribute the fact table and one dimension table on their common columns.
    • A fact table can have only one distribution key. Any tables that join on another key aren’t collocated with the fact table.
    • Choose one dimension to collocate based on how frequently it is joined and the size of the joining rows.
    • Designate both the dimension table’s primary key and the fact table’s corresponding foreign key as the DISTKEY.
  • Choose the largest dimension based on the size of the filtered dataset.
    • Only the rows that are used in the join need to be distributed, so consider the size of the dataset after filtering, not the size of the table.
  • Choose a column with high cardinality in the filtered result set.
    • If you distribute a sales table on a date column, for e.g, you should probably get fairly even data distribution, unless most of the sales are seasonal
    • However, if you commonly use a range-restricted predicate to filter for a narrow date period, most of the filtered rows occur on a limited set of slices and the query workload is skewed.
  • Change some dimension tables to use ALL distribution.
    • If a dimension table cannot be collocated with the fact table or other important joining tables, query performance can be improved significantly by distributing the entire table to all of the nodes.
    • Using ALL distribution multiplies storage space requirements and increases load times and maintenance operations.

Sort Key Selection

  • Redshift stores the data on disk in sorted order according to the sort key, which helps query optimizer to determine optimal query plans.
  • If recent data is queried most frequently, specify the timestamp column as the leading column for the sort key.
    • Queries are more efficient because they can skip entire blocks that fall outside the time range.
  • If you do frequent range filtering or equality filtering on one column, specify that column as the sort key.
    • Redshift can skip reading entire blocks of data for that column.
    • Redshift tracks the minimum and maximum column values stored on each block and can skip blocks that don’t apply to the predicate range.
  • If you frequently join a table, specify the join column as both the sort key and the distribution key.
    • Doing this enables the query optimizer to choose a sort merge join instead of a slower hash join.
    • As the data is already sorted on the join key, the query optimizer can bypass the sort phase of the sort merge join.

Other Practices

  • Automatic compression produces the best results
  • COPY command analyzes the data and applies compression encodings to an empty table automatically as part of the load operation
  • Define primary key and foreign key constraints between tables wherever appropriate. Even though they are informational only, the query optimizer uses those constraints to generate more efficient query plans.
  • Don’t use the maximum column size for convenience.

Loading Data

  • You can load data into the tables using the three following methods:
    • Using Multi-Row INSERT
    • Using Bulk INSERT
    • Using COPY command
    • Staging tables
  • Copy Command
    • COPY command loads data in parallel from S3, EMR, DynamoDB, or multiple data sources on remote hosts.
    • COPY loads large amounts of data much more efficiently than using INSERT statements, and stores the data more effectively as well.
    • Use a Single COPY Command to Load from Multiple Files
    • DON’T use multiple concurrent COPY commands to load one table from multiple files as Redshift is forced to perform a serialized load, which is much slower.
  • Split the Load Data into Multiple Files
    • divide the data in multiple files with equal size (between 1MB and 1GB)
    • number of files to be a multiple of the number of slices in the cluster
    • helps to distribute workload uniformly in the cluster.
  • Use a Manifest File
    • S3 provides eventual consistency for some operations, so it is possible that new data will not be available immediately after the upload, which could result in an incomplete data load or loading stale data.
    • Data consistency can be managed using a manifest file to load data.
    • Manifest file helps specify different S3 locations in a more efficient way that with the use of S3 prefixes.
  • Compress Data Files
    • Individually compress the load files using gzip, lzop, bzip2, or Zstandard for large datasets
    • Avoid using compression, if small amount of data because the benefit of compression would be outweighed by the processing cost of decompression
    • If the priority is to reduce the time spent by COPY commands use LZO compression. In the other hand if the priority is to reduce the size of the files in S3 and the network bandwidth use BZ2 compression.
  • Load Data in Sort Key Order
    • Load the data in sort key order to avoid needing to vacuum.
    • As long as each batch of new data follows the existing rows in the table, the data will be properly stored in sort order, and you will not need to run a vacuum.
    • Presorting rows is not needed in each load because COPY sorts each batch of incoming data as it loads.
  • Load Data using IAM role

Designing Queries

  • Avoid using select *. Include only the columns you specifically need.
  • Use a CASE Expression to perform complex aggregations instead of selecting from the same table multiple times.
  • Don’t use cross-joins unless absolutely necessary
  • Use subqueries in cases where one table in the query is used only for predicate conditions and the subquery returns a small number of rows (less than about 200).
  • Use predicates to restrict the dataset as much as possible.
  • In the predicate, use the least expensive operators that you can.
  • Avoid using functions in query predicates.
  • If possible, use a WHERE clause to restrict the dataset.
  • Add predicates to filter tables that participate in joins, even if the predicates apply the same filters.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. An administrator needs to design a strategy for the schema in a Redshift cluster. The administrator needs to determine the optimal distribution style for the tables in the Redshift schema. In which two circumstances would choosing EVEN distribution be most appropriate? (Choose two.)
    1. When the tables are highly denormalized and do NOT participate in frequent joins.
    2. When data must be grouped based on a specific key on a defined slice.
    3. When data transfer between nodes must be eliminated.
    4. When a new table has been loaded and it is unclear how it will be joined to dimension.
  2. An administrator has a 500-GB file in Amazon S3. The administrator runs a nightly COPY command into a 10-node Amazon Redshift cluster. The administrator wants to prepare the data to optimize performance of the COPY command. How should the administrator prepare the data?
    1. Compress the file using gz compression.
    2. Split the file into 500 smaller files.
    3. Convert the file format to AVRO.
    4. Split the file into 10 files of equal size.

AWS Systems Manager

AWS Systems Manager

  • Systems Manager provides visibility and control of the infrastructure on AWS.
  • helps to view operational data from multiple AWS services and automates operational tasks across AWS resources.
  • A managed instance is an EC2 instance or on-premises machine in your hybrid environment that has been configured for Systems Manager.
  • works with managed instances, which are configured for use with Systems Manager.
  • helps configure and maintain managed instances.
  • helps maintain security and compliance by scanning the managed instances and reporting on (or taking corrective action on) any policy violations it detects.
  • supported machine types include EC2 instances, on-premises servers, and virtual machines (VMs), including VMs in other cloud environments.
  • supported operating system types include Windows Server, multiple distributions of Linux, and Raspbian.

Operations Management

Capabilities that help manage the AWS resources

  • Trusted Advisor is an online tool that provides real-time guidance to help you provision the resources following AWS best practices.
  • AWS Personal Health Dashboard provides information about AWS Health events that can affect your account
  • OpsCenter provides a central location where operations engineers and IT professionals can view, investigate, and resolve operational work items (OpsItems) related to AWS resources

Application Management

SSM Parameter Store

  • SSM Parameter Store provides secure, scalable, centralized, hierarchical storage for configuration data and secret management.
  • can store data such as passwords, database strings, AMI IDs and license codes as parameter values.
  • supports values as plain text or encrypted data using the SecureString parameter.
  • uses AWS KMS to encrypt the parameter value.
  • parameters can be referenced by using the unique name specified during parameter creation.
  • supports versioning of configuration/secrets.
  • provides high availability as Parameter Store is hosted in multiple AZs in an AWS Region.
  • can be configured for change notifications and invoke automated actions for both parameters and parameter policies
  • is integrated with Secrets Manager and can be used to retrieve Secrets Manager secrets when using other AWS services that already support references to Parameter Store parameters
  • does not support password rotation, use Secrets Manager instead.

SSM Parameter Store vs Secrets Manager

AWS Secrets Manager vs Systems Parameter Store

Change Management

Capabilities for taking action against or changing the AWS resources

Systems Manager Automation

  • helps automate common maintenance and deployment tasks for e.g. create and update AMIs, apply driver and agent updates, reset passwords on Windows instances, reset SSH keys on Linux instances, and apply OS patches or application updates.

Maintenance Windows

  •  helps set up recurring schedules for managed instances to run administrative tasks like installing patches and updates without interrupting business-critical operations.

Node Management

Capabilities for managing the EC2 instances, on-premises servers and virtual machines (VMs) in the hybrid environment, and other types of AWS resources (nodes)

Systems Manager Configuration Compliance

  • helps scan fleet of managed instances for patch compliance and configuration inconsistencies.
  • helps collect and aggregate data from multiple AWS accounts and Regions, and then drill down into specific resources that aren’t compliant.
  • provides, by default, displays compliance data about Patch Manager patching and State Manager associations, but can be customized

Session Manager

  • helps manage EC2 instances through an interactive one-click browser-based shell or through the AWS CLI.
  • provides secure and auditable instance management without the need to open inbound ports, maintain bastion hosts, or manage SSH keys.
  • helps comply with corporate policies that require controlled access to instances, strict security practices, and fully auditable logs with instance access details, while still providing end users with simple one-click cross-platform access to the EC2 instances.

Systems Manager Run Command

  • Run Command allows you to automate common administrative tasks and perform one-time configuration changes at scale.
  • helps to remotely and securely manage the configuration of the managed instances at scale.
  • helps perform on-demand changes like updating applications or running Linux shell scripts and Windows PowerShell commands on a target set of dozens or hundreds of instances.

Patch Manager

  • helps automate the process of patching managed instances with both security-related and other types of updates.
  • helps apply patches for both operating systems and applications. (On Windows Server, application support is limited to updates for Microsoft applications.)
  • enables scanning of instances for missing patches and applies them individually or to a large group of instances by using EC2 instance tags.
  • provides options to scan the instances and report compliance on a schedule, install available patches on a schedule, and patch or scan instances on-demand as needed.
  • Patch baselines
    • defines which patches should and shouldn’t be installed
    • can include rules for auto-approving patches within days of their release, as well as a list of approved and rejected patches
    • helps install security patches on a regular basis by scheduling patching to run as a Systems Manager maintenance window task.
  • Patch group
    • helps associate a set of instances with a specific patch baseline
    • requires instances to be tagged with a tag key Patch Group
    • an instance can only be part of one Patch Group
    • a patch group can be registered with only one patch baseline

Systems Manager Inventory

  • provides visibility into the EC2 and on-premises computing environment
  • collect metadata from the managed instances about applications, files, components, patches, and more on the managed instances
  • collects only metadata from the managed instances and doesn’t access proprietary information or data.
  • supports custom metadata in addition to the pre-configured metadata
  • supports inventory data collection from multiple regions and AWS Accounts
  • supports inventory data storage in a single centralized location like S3 which can then be queried using Athena.

Systems Manager State Manager

  • is a secure and scalable configuration management service that helps automate the process of keeping the managed instances in a defined state.
  • helps ensure that the instances are bootstrapped with specific software at startup, joined to a Windows domain (Windows instances only), or patched with specific software updates.
  • A State Manager association is a configuration that is assigned to the managed instances which defines the state that you want to maintain on the instances.

Shared Resources

Capabilities for managing and configuring the AWS resources

Systems Manager Document (SSM document)

  • SSM document defines the actions that the Systems Manager performs.
  • SSM document types include 
    • Command documents, which are used by State Manager and Run Command, and 
    • Automation documents, which are used by Systems Manager Automation.
  • SSM Document can be defined in JSON or YAML and define parameters and actions.

Systems Manager Agent

  • is software that can be installed and configured on an EC2 instance, an on-premises server, or a virtual machine (VM)
  • makes it possible for the Systems Manager to update, manage, and configure these resources
  • must be installed on each instance to use with Systems Manager
  • usually comes preinstalled with a lot of Amazon Machine Images (AMIs), while it must be installed manually on other AMIs, and on on-premises servers and virtual machines for the hybrid environment

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. Which of the following tools from AWS allows the automatic collection of software inventory from EC2 instances and helps apply OS patches?
    1. AWS Code Deploy 
    2. Systems Manager
    3. EC2 AMI’s
    4. AWS Code Pipeline
  2. A Developer is writing several Lambda functions that each access data in a common RDS DB instance. They must share a connection string that contains the database credentials, which are a secret. A company policy requires that all secrets be stored encrypted. Which solution will minimize the amount of code the Developer must write?
    1. Use common DynamoDB table to store settings
    2. Use AWS Lambda environment variables
    3. Use Systems Manager Parameter Store secure strings
    4. Use a table in a separate RDS database
  3. A company has a fleet of EC2 instances and needs to remotely execute scripts for all of the instances. Which Amazon EC2 systems Manager feature allows this?
    1. Systems Manager Automation
    2. Systems Manager Run Command
    3. Systems Manager Parameter Store
    4. Systems Manager Inventory
  4. As a part of compliance check it was found that EC2 instances launched by the deployment team were not in compliance to latest security patches. The team had all tagged the resources. Which AWS service can help make the instances complaint?
    1. AWS Inspector
    2. AWS GuardDuty
    3. AWS Systems Manager
    4. AWS Shield
  5.  

References

AWS Cloud Migration

AWS Cloud Migration

Some of the key drivers to moving to cloud is

  • Operational Costs – Key components of operational costs are unit price of infrastructure, the ability to match supply and demand, finding a pathway to optionality, employing an elastic cost base, and transparency
  • Workforce Productivity – getting up and ready in seconds and various service availability.
  • Cost Avoidance – eliminating the need for hardware refresh programs and constant maintenance programs
  • Operational Resilience – increases resilience and thereby reduces organization’s risk profile
  • Business Agility – react to market conditions more quickly 

Cloud Stages of Adoption

Cloud Stages of Adoption

PROJECT

  • In the project phase, execute projects to get familiar with and experience benefits from the cloud.

FOUNDATION

  • After experiencing the benefits of cloud, build the foundation to scale the cloud adoption.
  • This includes creating a landing zone (a pre-configured, secure, multi-account AWS environment), Cloud Center of Excellence (CCoE), operations model, as well as assuring security and compliance readiness.

MIGRATION

  • Migrate existing applications including mission-critical applications or entire data centers to the cloud as you scale your adoption across a growing portion of the IT portfolio. 

REINVENTION

  • Now that the operations are in the cloud, focus on reinvention by taking advantage of the flexibility and capabilities of AWS to transform business by speeding time to market and increasing the attention on innovation.

Migration Process

Migration Process

Phase 1: Migration Preparation and Business Planning

  • Determine the right objectives and begin to get an idea of the types of benefits you will see.
  • Starts with some foundational experience and developing a preliminary business case for a migration, which requires taking objectives into account, along with the age and architecture of the existing applications, and their constraints.

Phase 2: Portfolio Discovery and Planning

  • Understand the IT portfolio, the dependencies between applications, and begin to consider what types of migration strategies needed to meet the business case objectives.
  • With the portfolio discovery and migration approach, you are in a good position to build a full business case.

Phase 3 & Phase 4: Designing, Migrating, and Validating Application

  • Move focus from the portfolio level to the individual application level and design, migrate, and validate each application.
  • Each application is designed, migrated, and validated according to one of the six common application strategies (“The 6 R’s”).
  • Once you have some foundational experience from migrating a few apps and a plan in place that the organization can get behind – it’s time to accelerate the migration and achieve scale.
  • AWS provides migration services that help for moving applications and data from on-premises to AWS – AWS Server Migration Service (SMS)AWS Database Migration Service (DMS)

Phase 5: Operate

  • Once applications are migrated, iterate on the new foundation, turn off old systems, and constantly iterate toward a modern operating model.
  • Operating model becomes an evergreen set of people, process, and technology that constantly improves as you migrate more applications.

Application Migration Strategies

Migration strategies depend upon what is in your environment and the what is suitable for the portfolio, taking into account the business and technical requirements.

Below are the Six common migration strategies employed and build upon “The 5 R’s” that Gartner outlined in 2011.

Application Migration Strategies

1. Rehost (“lift and shift”)

  • Moving your application as is to the Cloud.
  • helps to quickly implement the migration and scale to meet a business case
  • provides better opportunity for re-architect the applications once they are already running in cloud, with the organization having already developed cloud skills and the application with its data is migrated and handling traffic.
  • Rehosting can be automated with tools such as AWS Server Migration Service, or can be done manually

2. Replatform (“lift, tinker and shift”)

  • Moving your application to the Cloud with optimizations, without any major changes.
  • Replatform helps achieve some tangible benefit without changing the core architecture of the application. For e.g., using RDS for database or Elastic Beanstalk for applications.

3. Repurchase (“drop and shop”)

  • Dropping the application and Moving to a complete new Solution
  • More of an Buy in a Build vs Buy model, might be expensive in short team but faster time to market.
  • Move to a different product, which likely means the organization is willing to change the existing used licensing model

4. Refactor / Re-architect

  • Moving the application to Cloud, with major changes.
  • More of a Build in a Build vs Buy model, and would take time.
  • driven by a strong business need to add features, scale, or performance with agility and improvement in business continuity that would otherwise be difficult to achieve in the application’s existing environment.

5. Retire

  • Decommission the applications, not needed anymore.
  • Identifying IT assets that are no longer useful and can be turned off will help boost your business case and direct your attention towards maintaining the resources that are widely used.

6. Retain

  • Keep the applications as is in the current environment
  • Retain portions of the IT portfolio, which have tight dependencies, difficult, not in priority or ready for migration

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. A company is planning the migration of several lab environments used for software testing. An assortment of custom tooling is used to manage the test runs for each lab. The labs use immutable infrastructure for the software test runs, and the results are stored in a highly available SQL database cluster. Although completely rewriting the custom tooling is out of scope for the migration project, the company would like to optimize workloads during the migration. Which application migration strategy meets this requirement?
    1. Re-host
    2. Re-platform
    3. Re-factor/re-architect
    4. Retire

References

AWS Certified DevOps Engineer – Professional (DOP-C01) Exam Learning Path

AWS Certified DevOps Engineer - Professional (DOP-C01) Certificate

AWS Certified DevOps Engineer – Professional (DOP-C01) Exam Learning Path

NOTE – Refer to DOP-C02 Learning Path

AWS Certified DevOps Engineer – Professional (DOP-C01) exam is the upgraded pattern of the DevOps Engineer – Professional exam which was released last year (2018). I recently attempted the latest pattern and AWS has done quite good in improving it further, as compared to the old one, to include more DevOps related questions and services.

AWS Certified DevOps Engineer – Professional (DOP-C01) exam basically validates

  • Implement and manage continuous delivery systems and methodologies on AWS
  • Implement and automate security controls, governance processes, and compliance validation
  • Define and deploy monitoring, metrics, and logging systems on AWS
  • Implement systems that are highly available, scalable, and self-healing on the AWS platform
  • Design, manage, and maintain tools to automate operational processes

Refer to AWS Certified DevOps Engineer – Professional Exam Guide

AWS Certified DevOps Engineer – Professional (DOP-C01) Exam Summary

  • AWS Certified DevOps Engineer – Professional exam was for a total of 170 minutes but it had 75 questions (I was always assuming it to be 65) and I just managed to complete the exam with 20 mins remaining. So be sure you are prepared and manage your time well. As always, mark the questions for review and move on and come back to them after you are done with all.
  • One of the key tactic I followed when solving the DevOps Engineer questions was to read the question and use paper and pencil to draw a rough architecture and focus on the areas that you need to improve. Trust me, you will be able eliminate 2 answers for sure and then need to focus on only the other two. Read the other 2 answers to check the difference area and that would help you reach to the right answer or atleast have a 50% chance of getting it right.
  • AWS Certified DevOps Engineer – Professional exam covers a lot of concepts and services related to Automation, Deployments, Disaster Recovery, HA, Monitoring, Logging and Troubleshooting. It also covers security and compliance related topics.
  • Be sure to cover the following topics
    • Whitepapers are the key to understand Deployments and DR
    • Management Tools
      • DevOps professional exam cannot be cleared without the knowledge of this topics
      • Deep dive into CloudFormation, Elastic Beanstalk and OpsWorks
      • Very important to understand CloudFormation vs Elastic Beanstalk vs OpsWorks
      • CloudFormation
        • Have in-depth understand of CloudFormation concepts
        • Know how to indicate completion of events using CloudFormation helper scripts.
        • Understand CloudFormation deployment strategies esp. rolling and replacing update with AutoScaling and update of launch configuration
        • Understand CloudFormation policies esp. Update and Deletion policies (hint : retain resources on stack deletion)
        • Understand CloudFormation Best Practices esp. Nested Stacks and logical grouping
        • Understand CloudFormation template anatomy – parameters, outputs, mappings
        • Understand CloudFormation Custom resource and its use cases (hint : you can use Custom resource to retrieve AMI IDs or interact with external services)
      • Elastic Beanstalk
      • OpsWorks
        • Understand OpsWorks overall – stacks, layers, recipes
        • Understand OpsWorks Lifecycle events esp. the Configure event and how it can be used.
        • Understand OpsWorks Deployment Strategies
        • Know OpsWorks auto-healing and how to be notified for it.
      • Development Tools
        • Unlike the previous DevOps Engineer – Professional exam, the latest pattern has a heavy focus on the Developer tools and be sure to deep dive into them
        • Understand CodePipepline, CodeCommit, CodeDeploy, CodeBuild and their uses cases
        • CodePipeline
          • Understand how to build Pipelines and integration with other Code* services
          • Understand CodePipeline pipeline structure (Hint : run builds parallelly using runorder)
          • Understand how to configure notifications on events and failures
          • Know CodePipeline supports Manual Approval
        • CodeCommit
          • How to handle deployments for code. (Hint : Same repository and branches for projects and environments)
          • Know CodeCommit IAM policies
        • CodeDeploy
    • Monitoring & Governance tools
      • Very important to understand AWS CloudWatch vs AWS CloudTrail vs AWS Config
      • Very important to understand Trust Advisor vs Systems manager vs AWS Inspector
      • Know Personal Health Dashboard & Service Health Dashboard
      • CloudWatch
      • CloudTrail
        • Understand how to maintain CloudTrail logs integrity
      • Understand AWS Config and its use cases (hint : Config maintains history and can be used to revert the config)
      • Know Personal Health Dashboard (hint : it tracks events on your AWS resources)
      • Understand AWS Trusted Advisor and what it provides (hint : low utilization resources)
      • Systems Manager
        • Systems Manager is also covered heavily in the exams so be sure you know
        • Understand AWS Systems Manager and its various services like parameter store, patch manager
    • Networking & Content Delivery
      • Networking is covered very lightly. Usually the questions are targetted towards Troubleshooting of access or permissions.
      • Know VPC
      • Route 53
    • Security, Identity & Compliance
    • Storage
      • Exam does not cover Storage services in deep
      • Focus on Simple Secure Service (S3)
        • Understand S3 Permissions (Hint – acl authenticated users provides access to all authenticated users. How to control access)
        • Know S3 disaster recovery across region. (hint : cross region replication)
        • Know CloudFront for caching to improve performance
      • Elastic Block Store
        • Focus mainly on EBS Backup using snapshots for HA and Disaster recovery
    • Database
    • Compute
      • Know EC2
        • Understand ENI for HA, user data, pre-baked AMIs for faster instance start times
        • Amazon Linux 2 Image (hint : it allows for replication of Amazon Linux behavior in on-premises)
        • Snapshot and sharing
      • Auto Scaling
        • Auto Scaling Lifecycle events
        • Blue/green deployments with Auto Scaling – With new launch configurations, new auto scaling groups or CloudFormation update policies.
      • Understand Lambda
      • ECS
        • Know Monitoring and deployments with image update
    • Integration Tools
      • Know how CloudWatch integration with SNS and Lambda can help in notification (Topics are not required to be in detail)

AWS Certified DevOps Engineer – Professional (DOP-C01) Exam Resources

AWS Certified Advanced Networking – Speciality (ANS-C00) Exam Learning Path

AWS Certified Advanced Networking – Speciality (ANS-C00) Exam Learning Path

I recently cleared the AWS Certified Advanced Networking – Speciality (ANS-C00), which was my first, en route my path to the AWS Speciality certifications. Frankly, I feel the time I gave for preparation was still not enough, but I just about managed to get through. So a word of caution, this exam is inline or tougher than the professional exam especially for the reason that the Networking concepts it covers are not something you can get your hands dirty with easily.

AWS Certified Advanced Networking – Speciality (ANS-C00) exam is the focusing on the AWS Networking concepts. It basically validates

  • Design, develop, and deploy cloud-based solutions using AWS
    Implement core AWS services according to basic architecture best practices
  • Design and maintain network architecture for all AWS services
  • Leverage tools to automate AWS networking tasks

Refer to AWS Certified Advanced Networking – Speciality Exam Guide

AWS Certified Advanced Networking – Speciality (ANS-C00) Exam Resources

AWS Certified Advanced Networking – Speciality (ANS-C00) Exam Summary

  • AWS Certified Advanced Networking – Speciality exam covers a lot of Networking concepts like VPC, VPN, Direct Connect, Route 53, ALB, NLB.
  • One of the key tactic I followed when solving the DevOps Engineer questions was to read the question and use paper and pencil to draw a rough architecture and focus on the areas that you need to improve. Trust me, you will be able eliminate 2 answers for sure and then need to focus on only the other two. Read the other 2 answers to check the difference area and that would help you reach to the right answer or atleast have a 50% chance of getting it right.
  • Be sure to cover the following topics
    • Networking & Content Delivery
      • You should know everything in Networking.
      • Understand VPC in depth
      • Virtual Private Network to establish connectivity between on-premises data center and AWS VPC
      • Direct Connect to establish connectivity between on-premises data center and AWS VPC and Public Services
        • Make sure you understand Direct Connect in detail, without this you cannot clear the exam
        • Understand Direct Connect connections – Dedicated and Hosted connections
        • Understand how to create a Direct Connect connection (hint: LOA-CFA provides the details for partner to connect to AWS Direct Connect location)
        • Understand virtual interfaces options – Private Virtual Interface for VPC resources and Public Virtual Interface for Public resources
        • Understand setup Private and Public VIF
        • Understand Route Propagation, propagation priority, BGP connectivity
        • Understand High Availability options based on cost and time i.e. Second Direct Connect connection OR VPN connection
        • Understand Direct Connect Gateway – it provides a way to connect to multiple VPCs from on-premises data center using the same Direct Connect connection
      • Route 53
        • Understand Route 53 and Routing Policies and their use cases Focus on Weighted, Latency routing policies
        • Understand Route 53 Split View DNS to have the same DNS to access a site externally and internally
      • Understand CloudFront and use cases
      • Load Balancer
        • Understand ELB, ALB and NLB 
        • Understand the difference ELB, ALB and NLB esp. ALB provides Content, Host and Path based Routing while NLB provides the ability to have static IP address
        • Know how to design VPC CIDR block with NLB (Hint – minimum number of IPs required are 8)
        • Know how to pass original Client IP to the backend instances (Hint – X-Forwarded-for and Proxy Protocol)
      • Know WorkSpaces requirements and setup
    • Security
      • Know AWS GuardDuty as managed threat detection service
      • Know AWS Shield esp. the Shield Advanced option and the features it provides
      • Know WAF as Web Traffic Firewall – (Hint – WAF can be attached to your CloudFront, Application Load Balancer, API Gateway to dynamically detect and prevent attacks)
    •  

AWS Network Connectivity Options

AWS Network Connectivity Options

Internet Gateway

  • provides Internet connectivity to VPC
  • is a horizontally scaled, redundant, and highly available component that allows communication between instances in your VPC and the internet.
  • imposes no availability risks or bandwidth constraints on your network traffic.
  • serves two purposes: to provide a target in the VPC route tables for internet-routable traffic and to perform NAT for instances that have not been assigned public IPv4 addresses.
  • supports IPv4 and IPv6 traffic.

NAT Gateway

  • enables instances in a private subnet to connect to the internet or other AWS services, but prevents the Internet from initiating connections with the instances.
  • Private NAT gateway allows instances in private subnets to connect to other VPCs or the on-premises network.

Egress Only Internet Gateway

  • NAT devices are not supported for IPv6 traffic, use an Egress-only Internet gateway instead
  • Egress-only Internet gateway is a horizontally scaled, redundant, and highly available VPC component that
  • Egress-only Internet gateway allows outbound communication over IPv6 from instances in the VPC to the Internet and prevents the Internet from initiating an IPv6 connection with your instances.

VPC Endpoints

  • VPC endpoint provides a private connection from VPC to supported AWS services and VPC endpoint services powered by PrivateLink without requiring an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
  • Instances in the VPC do not require public IP addresses to communicate with resources in the service. Traffic between the VPC and the other service does not leave the Amazon network.
  • VPC Endpoints are virtual devices and are horizontally scaled, redundant, and highly available VPC components that allow communication between instances in the VPC and services without imposing availability risks or bandwidth constraints on the network traffic.
  • VPC Endpoints are of two types
    • Interface Endpoints – is an elastic network interface with a private IP address that serves as an entry point for traffic destined to supported services.
    • Gateway Endpoints – is a gateway that is a target for a specified route in your route table, used for traffic destined to a supported AWS service. Currently only Amazon S3 and DynamoDB.

VPC Private LinksAWS Private Links

  • provides private connectivity between VPCs, AWS services, and your on-premises networks without exposing your traffic to the public internet.
  • helps privately expose a service/application residing in one VPC (service provider) to other VPCs (consumer) within an AWS Region in a way that only consumer VPCs initiate connections to the service provider VPC.
  • With ALB as a target of NLB, ALB’s advanced routing capabilities can be combined with AWS PrivateLink.

VPC Peering

  • enables networking connection between two VPCs to route traffic between them using private IPv4 addresses or IPv6 addresses
  • connections can be created between your own VPCs, or with a VPC in another AWS account.
  • enables full bidirectional connectivity between the VPCs
  • supports inter-region VPC peering connection
  • uses existing underlying AWS infrastructure
  • does not have a single point of failure for communication or a bandwidth bottleneck.
  • VPC Peering connections have limitations
    • cannot be used with Overlapping CIDR blocks
    • does not provide Transitive peering
    • does not support Edge to Edge routing through Gateway or private connection
  • is best used when resources in one VPC must communicate with resources in another VPC, the environment of both VPCs is controlled and secured, and the number of VPCs to be connected is less than 10

VPN CloudHub

  • AWS VPN CloudHub allows you to securely communicate from one site to another using AWS Managed VPN or Direct Connect
  • AWS VPN CloudHub operates on a simple hub-and-spoke model that can be used with or without a VPC
  • AWS VPN CloudHub can be used if you have multiple branch offices and existing internet connections and would like to implement a convenient, potentially low cost hub-and-spoke model for primary or backup connectivity between these remote offices.
  • AWS VPN CloudHub leverages VPC virtual private gateway with multiple gateways, each using unique BGP autonomous system numbers (ASNs).

Transit VPC

  • A transit VPC is a common strategy for connecting multiple, geographically disperse VPCs and remote networks in order to create a global network transit center.
  • A transit VPC simplifies network management and minimizes the number of connections required to connect multiple VPCs and remote networks
  • Transit VPC can be used to support important use cases
    • Private Networking – You can build a private network that spans two or more AWS Regions.
    • Shared Connectivity – Multiple VPCs can share connections to data centers, partner networks, and other clouds.
    • Cross-Account AWS Usage – The VPCs and the AWS resources within them can reside in multiple AWS accounts.
  • Transit VPC design helps implement more complex routing rules, such as network address translation between overlapping network ranges, or to add additional network-level packet filtering or inspection.
  • Transit VPC
    • supports Transitive routing using the overlay VPN network — allowing for a simpler hub and spoke design. Can be used to provide shared services for VPC Endpoints, Direct Connect connection, etc.
    • supports network address translation between overlapping network ranges.
    • supports vendor functionality around advanced security (layer 7 firewall/Intrusion Prevention System (IPS)/Intrusion Detection System (IDS) ) using third-party software on EC2
    • leverages instance-based routing that increases costs while lowering availability and limiting the bandwidth.
    • Customers are responsible for managing the HA and redundancy of EC2 instances running the third-party vendor virtual appliance

Transit Gateway

Transit Gateway

  • is a highly available and scalable service to consolidate the AWS VPC routing configuration for a region with a hub-and-spoke architecture.
  • is a Regional resource and can connect VPCs within the same AWS Region.
  • TGWs across different regions can peer with each other to enable VPC communications within the same or different regions.
  • provides simpler VPC-to-VPC communication management over VPC Peering with a large number of VPCs.
  • enables you to attach VPCs (across accounts) and VPN connections in the same Region and route traffic between them.
  • support dynamic and static routing between attached VPCs and VPN connections
  • removes the need for using full mesh VPC Peering and Transit VPC

Hybrid Connectivity

AWS Network Connectivity Decision Tree

Virtual Private Network (VPN)

VPC Managed VPN Connection
  • VPC provides the option of creating an IPsec VPN connection between remote customer networks and their VPC over the internet
  • AWS managed VPN endpoint includes automated multi–data center redundancy & failover built into the AWS side of the VPN connection
  • AWS managed VPN consists of two parts
    • Virtual Private Gateway (VPG) on AWS side
    • Customer Gateway (CGW) on the on-premises data center
  • AWS Managed VPN only provides Site-to-Site VPN connectivity. It does not provide Point-to-Site VPC connectivity for e.g. from Mobile
  • Virtual Private Gateway are Highly Available as it represents two distinct VPN endpoints, physically located in separate data centers to increase the availability of the VPN connection.
  • High Availability on the on-premises data center must be handled by creating additional Customer Gateway.
  • AWS Managed VPN connections are low cost, quick to setup and start with compared to Direct Connect. However, they are not reliable as they traverse through Internet.

 

Software VPN

  • VPC offers the flexibility to fully manage both sides of the VPC connectivity by creating a VPN connection between your remote network and a software VPN appliance running in your VPC network.
  • Software VPNs help manage both ends of the VPN connection either for compliance purposes or for leveraging gateway devices that are not currently supported by Amazon VPC’s VPN solution.
  • Software VPNs allows you to handle Point-to-Site connectivity
  • Software VPNs, with the above design, introduces a single point of failure and needs to be handled.

Direct Connect – DX

  • AWS Direct Connect helps establish a dedicated private connection between an on-premises network and AWS.
  • Direct Connect can reduce network costs, increase bandwidth throughput, and provide a more consistent network experience than internet-based or VPN connections
  • Direct Connect uses industry-standard VLANs to access EC2 instances running within a VPC using private IP addresses
  • Direct Connect lets you establish
    • Dedicated Connection: A 1G, 10G, or 100G physical Ethernet connection associated with a single customer through AWS.
    • Hosted Connection: A 1G or 10G physical Ethernet connection that an AWS Direct Connect Partner provisions on behalf of a customer.
  • Direct Connect provides the following Virtual Interfaces
    • Private virtual interface – to access a VPC using private IP addresses.
    • Public virtual interface – to access all AWS public services using public IP addresses.
    • Transit virtual interface – to access one or more transit gateways associated with Direct Connect gateways.
  • Direct Connect connections are not redundant as each connection consists of a single dedicated connection between ports on your router and an Amazon router
  • Direct Connect High Availability can be configured using
    • Multiple Direct Connect connections
    • Back-up IPSec VPN connection

LAGs

  • Direct Connect link aggregation group (LAG) is a logical interface that uses the Link Aggregation Control Protocol (LACP) to aggregate multiple connections at a single AWS Direct Connect endpoint, allowing you to treat them as a single, managed connection.
  • LAGs need the following
    • All connections in the LAG must use the same bandwidth.
    • A maximum of four connections in a LAG. Each connection in the LAG counts toward the overall connection limit for the Region.
    • All connections in the LAG must terminate at the same AWS Direct Connect endpoint.

Direct Connect Gateway

  • is a globally available resource to enable connections to multiple VPCs across different regions or AWS accounts.
  • allows you to connect an AWS Direct Connect connection to one or more VPCs in the account that are located in the same or different regions
  • allows connecting any participating VPCs from one private VIF, reducing Direct Connect management.
  • can be created in any public region and accessed from all other public regions
  • can also access the public resources in any AWS Region using a public virtual interface.

References

AWS CloudFormation Best Practices

AWS CloudFormation Best Practices

  • AWS CloudFormation Best Practices are based on real-world experience from current AWS CloudFormation customers
  • AWS CloudFormation Best Practices help provide guidelines on
    • how to plan and organize stacks,
    • create templates that describe resources and the software applications that run on them,
    • and manage stacks and their resources

Required Mainly for Developer, SysOps Associate & DevOps Professional Exam

Planning and Organizing

Organize Your Stacks By Lifecycle and Ownership

  • Use the lifecycle and ownership of the AWS resources to help you decide what resources should go in each stack.
  • By grouping resources with common lifecycles and ownership, owners can make changes to their set of resources by using their own process and schedule without affecting other resources.
  • For e.g. Consider an Application using Web and Database instances. Both the Web and Database have a different lifecycle and usually the ownership lies with different teams. Maintaining both in a single stack would need communication and co-ordination between different teams introducing complexity. It would be best to have different stacks owned by the respective teams, so that they can update their resources without impacting each others’s stack.

Use Cross-Stack References to Export Shared Resources

  • With multiple stacks, there is usually a need to refer values and resources across stacks.
  • Use cross-stack references to export resources from a stack so that other stacks can use them
  • Stacks can use the exported resources by calling them using the Fn::ImportValue function.
  • For e.g. Web stack would always need resources from the Network stack like VPC, Subnets etc.

Use IAM to Control Access

  • Use IAM to control access to
    • what AWS CloudFormation actions users can perform, such as viewing stack templates, creating stacks, or deleting stacks
    • what actions CloudFormation can perform on resources on their behalf
  • Remember, having access to CloudFormation does not provide user with access to AWS resources. That needs to be provided separately.
  • To separate permissions between a user and the AWS CloudFormation service, use a service role. AWS CloudFormation uses the service role’s policy to make calls instead of the user’s policy.

Verify Quotas for All Resource Types

  • Ensure that stack can create all the required resources without hitting the AWS account limits.

Reuse Templates to Replicate Stacks in Multiple Environments

  • Reuse templates to replicate infrastructure in multiple environments
  • Use parameters, mappings, and conditions sections to customize and make templates reusable
  • for e.g. creating the same stack in development, staging and production environment with different instance types, instance counts etc.

Use Nested Stacks to Reuse Common Template Patterns

  • Nested stacks are stacks that create other stacks.
  • Nested stacks separate out the common patterns and components to create dedicated templates for them, preventing copy pasting across stacks.
  • for e.g. a standard load balancer configuration can be created as nested stack and just used by other stacks

Creating templates

Do Not Embed Credentials in Your Templates

  • Use input parameters to pass in sensitive information such as DB password whenever you create or update a stack.
  • Use the NoEcho property to obfuscate the parameter value.

Use AWS-Specific Parameter Types

  • For existing AWS-specific values, such as existing Virtual Private Cloud IDs or an EC2 key pair name, use AWS-specific parameter types
  • AWS CloudFormation can quickly validate values for AWS-specific parameter types before creating your stack.

Use Parameter Constraints

  • Use Parameter constraints to describe allowed input values so that CloudFormation catches any invalid values before creating a stack.
  • For e.g. constraints for database user name with min and max length

Use AWS::CloudFormation::Init to Deploy Software Applications on Amazon EC2 Instances

  • Use AWS::CloudFormation::Init resource and the cfn-init helper script to install and configure software applications on EC2 instances

Validate Templates Before Using Them

  • Validate templates before creating or updating a stack
  • Validating a template helps catch syntax and some semantic errors, such as circular dependencies, before AWS CloudFormation creates any resources.
  • During validation, AWS CloudFormation first checks if the template is valid JSON or a valid YAML. If both checks fail, AWS CloudFormation returns a template validation error.

Managing stacks

Manage All Stack Resources Through AWS CloudFormation

  • After launching the stack, any further updates should be done through CloudFormation only.
  • Doing changes outside the stack can create a mismatch between the stack’s template and the current state of the stack resources, which can cause errors if you update or delete the stack.

Create Change Sets Before Updating Your Stacks

  • Change sets provides a preview of how the proposed changes to a stack might impact the running resources before you implement them
  • CloudFormation doesn’t make any changes to the stack until you execute the change set, allowing you to decide whether to proceed with the proposed changes or create another change set.

Use Stack Policies

  • Stack policies help protect critical stack resources from unintentional updates that could cause resources to be interrupted or even replaced
  • During a stack update, you must explicitly specify the protected resources that you want to update; otherwise, no changes are made to protected resources

Use AWS CloudTrail to Log AWS CloudFormation Calls

  • AWS CloudTrail tracks anyone making AWS CloudFormation API calls in the AWS account.
  • API calls are logged whenever anyone uses the AWS CloudFormation API, the AWS CloudFormation console, a back-end console, or AWS CloudFormation AWS CLI commands.
  • Enable logging and specify an Amazon S3 bucket to store the logs.

Use Code Reviews and Revision Controls to Manage Your Templates

  • Using code reviews and revision controls help track changes between different versions of your templates and changes to stack resources
  • Maintaining history can help revert the stack to a certain version of the template.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. A company has deployed their application using CloudFormation. They want to update their stack. However, they want to understand how the changes will affect running resources before implementing the updated. How can the company achieve the same?
    1. Use CloudFormation Validate Stack feature
    2. Use CloudFormation Dry Run feature
    3. Use CloudFormation Stage feature
    4. Use CloudFormation Change Sets feature
  2. You have multiple similar three-tier applications and have decided to use CloudFormation to maintain version control and achieve automation. How can you best use CloudFormation to keep everything agile and maintain multiple environments while keeping cost down?
    1. Create multiple templates in one CloudFormation stack.
    2. Combine all resources into one template for version control and automation.
    3. Use CloudFormation custom resources to handle dependencies between stacks
    4. Create separate templates based on functionality, create nested stacks with CloudFormation.
  3. You are working as an AWS DevOps admins for your company. You are in-charge of building the infrastructure for the company’s development teams using CloudFormation. The template will include building the VPC and networking components, installing a LAMP stack and securing the created resources. As per the AWS best practices what is the best way to design this template?
    1. Create a single CloudFormation template to create all the resources since it would be easier from the maintenance perspective.
    2. Create multiple CloudFormation templates based on the number of VPC’s in the environment.
    3. Create multiple CloudFormation templates based on the number of development groups in the environment.
    4. Create multiple CloudFormation templates for each set of logical resources, one for networking, and the other for LAMP stack creation.

References

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Learning Path

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Learning Path

AWS Certified SysOps Administrator – Associate (SOA-C01) exam is the latest AWS exam and has already replaced the old SysOps Administrator – Associate exam from 24th Sept 2018. It basically validates

  • Deploy, manage, and operate scalable, highly available, and fault tolerant systems on AWS
  • Implement and control the flow of data to and from AWS
  • Select the appropriate AWS service based on compute, data, or security requirements
  • Identify appropriate use of AWS operational best practices
  • Estimate AWS usage costs and identify operational cost control mechanisms
  • Migrate on-premises workloads to AWS

Refer AWS Certified SysOps – Associate Exam Guide Sep 18

AWS Certified SysOps Administrator - Associate Content Outline

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Summary

  • AWS Certified SysOps Administrator – Associate exam is quite different from the previous one with more focus on the error handling, deployment, monitoring.
  • AWS Certified SysOps Administrator – Associate exam covers a lot of latest AWS services like ALB, Lambda, AWS Config, AWS Inspector, AWS Shield while focusing majorly on other services like CloudWatch, Metrics from various services, CloudTrail.
  • Be sure to cover the following topics
    •  Monitoring & Management Tools
      • Understand CloudWatch monitoring to provide operational transparency
        • Know which EC2 metrics it can track (disk, network, CPU, status checks) and which would need custom metrics (memory, disk swap, disk storage etc.)
        • Know ELB monitoring
          • Classic Load Balancer metrics SurgeQueueLength and SpilloverCount
          • Reasons for 4XX and 5XX errors
      • Understand CloudTrail for audit and governance
      • Understand AWS Config and its use cases
      • Understand AWS Systems Manager and its various services like parameter store, patch manager
      • Understand AWS Trusted Advisor and what it provides
      • Very important to understand AWS CloudWatch vs AWS CloudTrail vs AWS Config
      • Very important to understand Trust Advisor vs Systems manager vs Inspector
      • Know Personal Health Dashboard & Service Health Dashboard
      • Deployment tools
        • Know AWS OpsWorks and its ability to support chef & puppet
        • Know Elastic Beanstalk and its advantages
        • Understand AWS CloudFormation
          • Know stacks, templates, nested stacks
          • Know how to wait for resources setup to be completed before proceeding esp. cfn-signal
          • Know how to retain resources (RDS, S3), prevent rollback in case of a failure
    • Networking & Content Delivery
      • Understand VPC in depth
        • Understand the difference between
          • Bastion host – allow access to instances in private subnet
          • NAT – route traffic from private subnets to internet
          • NAT instance vs NAT Gateway
          • Internet Gateway – Access to internet
          • Virtual Private Gateway – Connectivity between on-premises and VPC
          • Egress-Only Internet Gateway – relevant to IPv6 only to allow egress traffic from private subnet to internet, without allowing ingress traffic
        • Understand
        • Understand how VPC Peering works and limitations
        • Understand VPC Endpoints and supported services
        • Ability to debug networking issues like EC2 not accessible, EC2 instances not reachable, Instances in subnets not able to communicate with others or Internet.
      • Understand Route 53 and Routing Policies and their use cases
        • Focus on Weighted, Latency routing policies
      • Understand VPN and Direct Connect and their use cases
      • Understand CloudFront and use cases
      • Understand ELB, ALB and NLB and what features they provide like
        • ALB provides content and path routing
        • NLB provides ability to give static IPs to load balancer.
    • Compute
      • Understand EC2 in depth
        • Understand EC2 instance types
        • Understand EC2 purchase options esp. spot instances and improved reserved instances options.
        • Understand how IO Credits work and T2 burstable performance and T2 unlimited
        • Understand EC2 Metadata & Userdata. Whats the use of each? How to look up instance data after it is launched.
        • Understand EC2 Security. 
          • How IAM Role work with EC2 instances
          • IAM Role can now be attached to stopped and runnings instances
        • Understand AMIs and remember they are regional and how can they be shared with others.
        • Troubleshoot issues with launching EC2 esp. RequestLimitExceeded, InstanceLimitExceeded etc.
        • Troubleshoot connectivity, lost ssh keys issues
      • Understand Auto Scaling
      • Understand Lambda and its use cases
      • Understand Lambda with API Gateway
    • Storage
    • Databases
    • Security
      • Understand IAM as a whole
      • Understand KMS for key management and envelope encryption
      • Understand CloudHSM and KMS vs CloudHSM esp. support for symmetric and asymmetric keys
      • Know AWS Inspector and its use cases
      • Know AWS GuardDuty as managed threat detection service. Will help eliminate as the option
      • Know AWS Shield esp. the Shield Advanced option and the features it provides
      • Know WAF as Web Traffic Firewall
      • Know AWS Artifact as on-demand access to compliance reports
    • Integration Tools
      • Understand SQS as message queuing service and SNS as pub/sub notification service
        • Focus on SQS as a decoupling service
        • Understand SQS FIFO, make sure you know the differences between standard and FIFO
      • Understand CloudWatch integration with SNS for notification
    • Cost management

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Resources

AWS Cloud Computing Whitepapers

AWS Certified SysOps Administrator – Associate (SOA-C01) Exam Contents

Domain 1: Monitoring and Reporting

  1. Create and maintain metrics and alarms utilizing AWS monitoring services
  1. Recognize and differentiate performance and availability metrics
  2. Perform the steps necessary to remediate based on performance and availability metrics

Domain 2: High Availability

  1. Implement scalability and elasticity based on use case
  2. Recognize and differentiate highly available and resilient environments on AWS

Domain 3: Deployment and Provisioning

  1. Identify and execute steps required to provision cloud resources
  2. Identify and remediate deployment issues

Domain 4: Storage and Data Management

  1. Create and manage data retention
  2. Identify and implement data protection, encryption, and capacity planning needs

Domain 5: Security and Compliance

  1. Implement and manage security policies on AWS
  1. Implement access controls when using AWS
  2. Differentiate between the roles and responsibility within the shared responsibility model

Domain 6: Networking

  1. Apply AWS networking features
  1. Implement connectivity services of AWS
  2. Gather and interpret relevant information for network troubleshooting

Domain 7: Automation and Optimization

  1. Use AWS services and features to manage and assess resource utilization
  2. Employ cost-optimization strategies for efficient resource utilization
  3. Automate manual or repeatable process to minimize management overhead