AWS Certification – Analytics Services – Cheat Sheet

Kinesis Data Streams – KDS

  • enables real-time processing of streaming data at massive scale
  • provides ordering of records per shard
  • provides an ability to read and/or replay records in the same order
  • allows multiple applications to consume the same data
  • data is replicated across three data centers within a region
  • data is preserved for 24 hours, by default, and can be extended to 7 days
  • data inserted in Kinesis, it can’t be deleted (immutability) but only expires
  • streams can be scaled using multiple shards, based on the partition key
  • each shard provides the capacity of 1MB/sec data input and 2MB/sec data output with 1000 PUT requests per second
  • Kinesis vs SQS
    • real-time processing of streaming big data vs reliable, highly scalable hosted queue for storing messages
    • ordered records, as well as the ability to read and/or replay records in the same order vs no guarantee on data ordering (with the standard queues before the FIFO queue feature was released)
    • data storage up to 24 hours, extended to 7 days vs 1 minute to extended to 14 days but cleared if deleted by the consumer
    • supports multiple consumers vs single consumer at a time and requires multiple queues to deliver message to multiple consumers
  • Kinesis Producer
    • API
      • PutRecord and PutRecords are synchronous
      • PutRecords uses batching and increases throughput
      • might experience ProvisionedThroughputExceeded Exceptions, when sending more data. Use retries with backoff, resharding or change partition key.
    • KPL
      • producer supports synchronous or asynchronous use cases
      • supports inbuilt batching and retry mechanism
    • Kinesis Agent can help monitor log files and send them to KDS
    • supports third party libraries like Spark, Flume, Kafka connect etc.
  • Kinesis Consumers
    • Kinesis SDK
      • Records are polled by consumers from a shard
    • Kinesis Client Library (KCL)
      • Read records from Kinesis produced with the KPL (de-aggregation)
      • supports checkpointing feature to keep track of the application’s state and resume progress using DynamoDB table
      • if KDS application receives provisioned-throughput exceptions, increase the provisioned throughput for the DynamoDB table
    • Kinesis Connector Library – can be replaced using Firehose or Lambda
    • Third party libraries: Spark, Log4J Appenders, Flume, Kafka Connect…
    • Kinesis Firehose, AWS Lambda
    • Kinesis Consumer Enhanced Fan-Out
      • supports  Multiple Consumer applications for the same Stream
      • provides Low Latency ~70ms
      • Higher costs
      • Default limit of 5 consumers using enhanced fan-out per data stream
  • Kinesis Security
    • allows access / authorization control using IAM policies
    • supports Encryption in flight using HTTPS endpoints
    • supports Data encryption at rest either using client side encryption before pushing the data to data streams or server side encryption
    • supports VPC Endpoints to access within VPC

Kinesis Data  Firehose – KDF

  • data transfer solution for delivering real time streaming data to destinations such as S3,  Redshift,  Elasticsearch service, and Splunk.
  • is a fully managed service that automatically scales to match the throughput of your data and requires no ongoing administration
  • is Near Real Time (min. 60 secs) as it buffers incoming streaming data to a certain size or for a certain period of time before delivering it
  • supports batching, compression, and encryption of the data before loading it, minimizing the amount of storage used at the destination and increasing security
  • supports data compression, minimizing the amount of storage used at the destination. It currently supports GZIP, ZIP, and SNAPPY compression formats. Only GZIP is supported if the data is further loaded to Redshift.
  • supports out of box data transformation as well as custom transformation using Lambda function to transform incoming source data and deliver the transformed data to destinations
  • uses at least once semantics for data delivery.
  • supports multiple producers as datasource, which include Kinesis data stream, KPL, Kinesis Agent, or the Kinesis Data Firehose API using the AWS SDK, CloudWatch Logs, CloudWatch Events, or AWS IoT
  • does NOT support consumers like Spark and KCL
  • supports interface VPC endpoint to keep traffic between the VPC and Kinesis Data Firehose from leaving the Amazon network.

Kinesis Data Streams vs Kinesis Data Firehose

Kinesis Data Analytics

  • helps analyze streaming data, gain actionable insights, and respond to the business and customer needs in real time.
  • reduces the complexity of building, managing, and integrating streaming applications with other AWS service


  • Redshift is a fast, fully managed data warehouse
  • provides simple and cost-effective solution to analyze all the data using standard SQL and the existing Business Intelligence (BI) tools.
  • manages the work needed to set up, operate, and scale a data warehouse, from provisioning the infrastructure capacity to automating ongoing administrative tasks such as backups, and patching.
  • automatically monitors your nodes and drives to help you recover from failures.
  • only supports Single-AZ deployments.
  • replicates all the data within the data warehouse cluster when it is loaded and also continuously backs up your data to S3.
  • attempts to maintain at least three copies of your data (the original and replica on the compute nodes and a backup in S3).
  • supports cross-region snapshot replication to another region for disaster recovery
  • Redshift supports four distribution styles; AUTO, EVEN, KEY, or ALL.
    • KEY distribution uses a single column as distribution key (DISTKEY) and helps place matching values on the same node slice
    • Even distribution distributes the rows across the slices in a round-robin fashion, regardless of the values in any particular column
    • ALL distribution replicates whole table in every compute node.
    • AUTO distribution lets Redshift assigns an optimal distribution style based on the size of the table data
  • Redshift supports Compound and Interleaved sort keys
    • Compound key
      • is made up of all of the columns listed in the sort key definition, in the order they are listed and is more efficient when query predicates use a prefix, or query’s filter applies conditions, such as filters and joins, which is a subset of the sort key columns in order.
    • Interleaved sort key
      • gives equal weight to each column in the sort key, so query predicates can use any subset of the columns that make up the sort key, in any order.
      • Not ideal for monotonically increasing attributes
  • Column encodings CANNOT be changed once created.
  • supports query queues for Workload Management, in order to manage concurrency and resource planning. It is a best practice to have separate queues for long running resource-intensive queries and fast queries that don’t require big amounts of memory and CPU
  • Supports Enhanced VPC routing
  • Import/Export Data
    • UNLOAD helps copy data from Redshift table to S3
    • COPY command
      • helps copy data from S3 to Redshift
      • also supports EMR, DynamoDB, remote hosts using SSH
      • parallelized and efficient
      • can decrypt data as it is loaded from S3
      • DON’T use multiple concurrent COPY commands to load one table from multiple files as Redshift is forced to perform a serialized load, which is much slower.
      • supports data decryption when loading data, if data encrypted
      • supports decompressing data, if data is  compressed.
    • Split the Load Data into Multiple Files
    • Load the data in sort key order to avoid needing to vacuum.
    • Use a Manifest File
      • provides Data consistency, to avoid S3 eventual consistency issues
      • helps specify different S3 locations in a more efficient way that with the use of S3 prefixes.
  • Redshift Spectrum
    • helps query and retrieve structured and semistructured data from files in S3 without having to load the data into Redshift tables
    • Redshift Spectrum external tables are read-only. You can’t COPY or INSERT to an external table.


  • is a web service that utilizes a hosted Hadoop framework running on the web-scale infrastructure of EC2 and S3
  • launches all nodes for a given cluster in the same Availability Zone, which improves performance as it provides higher data access rate
  • seamlessly supports Reserved, On-Demand and Spot Instances
  • consists of Master Node for management and Slave nodes, which consists of Core nodes holding data and Task nodes for performing tasks only
  • is fault tolerant for slave node failures and continues job execution if a slave node goes down
  • does not automatically provision another node to take over failed slaves
  • supports Persistent and Transient cluster types
    • Persistent which continue to run
    • Transient which terminates once the job steps are completed
  • supports EMRFS which allows S3 to be used as a durable HA data storage

Detailed Reading


  •  fully-managed ETL service that automates the time-consuming steps of data preparation for analytics
  • is serverless and supports pay-as-you-go model.
  • recommends and generates ETL code to transform the source data into target schemas, and runs the ETL jobs on a fully managed, scale-out Apache Spark environment to load your data into its destination.
  • helps setup, orchestrate, and monitor complex data flows.
  • natively supports RDS, Redshift, S3 and databases on EC2 instances.
  • supports server side encryption for data at rest and SSL for data in motion.
  • provides development endpoints to edit, debug, and test the code it generates.
  • AWS Glue Data Catalog
    • is a central repository to store structural and operational metadata for all the data assets.
    • automatically discovers and profiles the data
    • automatically discover both structured and semi-structured data stored in the data lake on S3, Redshift, and other databases
    • provides a unified view of the data that is available for ETL, querying and reporting using services like Athena, EMR, and Redshift Spectrum.
    • Each AWS account has one AWS Glue Data Catalog per region.
  • AWS Glue crawler
    • connects to a data store, progresses through a prioritized list of classifiers to extract the schema of the data and other statistics, and then populates the Glue Data Catalog with this metadata
    • can be scheduled to run periodically so that the metadata is always up-to-date and in-sync with the underlying data.


  • is a very fast, easy-to-use, cloud-powered business analytics service that makes it easy to build visualizations, perform ad-hoc analysis, and quickly get business insights from their data, anytime, on any device.
  • delivers fast and responsive query performance by using a robust in-memory engine (SPICE).
    • “SPICE” stands for a Super-fast, Parallel, In-memory Calculation Engine
    • can also be  configured to keep the data in SPICE up-to-date as the data in the underlying sources change.
    • automatically replicates data for high availability and enables QuickSight to scale to support users to perform simultaneous fast interactive analysis across a wide variety of AWS data sources.
  • supports
    • Excel files and flat files like CSV, TSV, CLF, ELF
    • on-premises databases like PostgreSQL, SQL Server and MySQL
    • SaaS applications like Salesforce
    • and AWS data sources such as Redshift, RDS, Aurora, Athena, and S3
  • supports various functions to format and transform the data.
  • supports assorted visualizations that facilitate different analytical approaches:
    • Comparison and distribution – Bar charts (several assorted variants)
    • Changes over time – Line graphs, Area line charts
    • Correlation – Scatter plots, Heat maps
    • Aggregation – Pie graphs, Tree maps
    • Tabular – Pivot tables

Data Pipeline

  • orchestration service that helps define data-driven workflows to automate and schedule regular data movement and data processing activities
  • integrates with on-premises and cloud-based storage systems
  • allows scheduling, retry, and failure logic for the workflows


  • Elasticsearch Service is a managed service that makes it easy to deploy, operate, and scale Elasticsearch clusters in the AWS Cloud.
  • Elasticsearch provides
    • real-time, distributed search and analytics engine
    • ability to provision all the resources for Elasticsearch cluster and launches the cluster
    • easy to use cluster scaling options. Scaling Elasticsearch Service domain by adding or modifying instances, and storage volumes is an online operation that does not require any downtime.
    • provides self-healing clusters, which automatically detects and replaces failed Elasticsearch nodes, reducing the overhead associated with self-managed infrastructures
    • domain snapshots to back up and restore ES domains and replicate domains across AZs
    • enhanced security with IAM, Network, Domain access policies, and fine-grained access control
    • storage volumes for the data using EBS volumes
    • ability to span cluster nodes across multiple AZs in the same region, known as zone awareness,  for high availability and redundancy.  Elasticsearch Service automatically distributes the primary and replica shards across instances in different AZs.
    • dedicated master nodes to improve cluster stability
    • data visualization using the Kibana tool
    • integration with CloudWatch for monitoring ES domain metrics
    • integration with CloudTrail for auditing configuration API calls to ES domains
    • integration with S3, Kinesis, and DynamoDB for loading streaming data
    • ability to handle structured and Unstructured data
    • supports encryption at rest through KMS, node-to-node encryption over TLS, and the ability to require clients to communicate of HTTPS

AWS Data Pipeline – Certification

AWS Data Pipeline

  • AWS Data Pipeline is a web service that makes it easy to automate and schedule regular data movement and data processing activities in AWS
  • AWS Data Pipeline help define data-driven workflows
  • AWS Data Pipeline integrates with on-premises and cloud-based storage systems to allow developers to use their data when they need it, where they want it, and in the required format.
  • AWS Data Pipeline allows you to quickly define a pipeline, which defines a dependent chain of data sources, destinations, and predefined or custom data processing activities
  • Based on a defined schedule, the pipeline regularly performs processing activities such as distributed data copy, SQL transforms, EMR applications, or custom scripts against destinations such as S3, RDS, or DynamoDB.
  • By executing the scheduling, retry, and failure logic for the workflows as a highly scalable and fully managed service, Data Pipeline ensures that the pipelines are robust and highly available.

AWS Data Pipeline features

  • Distributed, fault-tolerant and highly available
  • Managed workflow orchestration service for data-driven workflows
  • Infrastructure management service, will provision and terminate resources as required
  • Provides dependency resolution
  • Can be scheduled
  • Grants control over retries, including frequency and number
  • Native integration with S3, DynamoDB, RDS, EMR, EC2 and Redshift
  • Support for both AWS based and external on-premise resources

AWS Data Pipeline Concepts

Pipeline Definition

  • Pipeline definition helps the business logic to be communicated to the AWS Data Pipeline
  • Pipeline definition defines the location of data (Data Nodes), activities to be performed, the schedule, resources to run the activities, per-conditions and actions to be performed

Pipeline Components, Instances, and Attempts

  • Pipeline components represent the business logic of the pipeline and are represented by the different sections of a pipeline definition.
  • Pipeline components specify the data sources, activities, schedule, and preconditions of the workflow
  • When AWS Data Pipeline runs a pipeline, it compiles the pipeline components to create a set of actionable instances and contains all the information needed to perform a specific task
  • Data Pipeline provides a durable and robust data management as it retries a failed operation depending on frequency & defined number for retries

Task Runners

  • A task runner is an application that polls AWS Data Pipeline for tasks and then performs those tasks
  • When Task Runner is installed and configured,
    • it polls AWS Data Pipeline for tasks associated with activated pipelines
    • after a task is assigned to Task Runner, it performs that task and reports its status back to AWS Data Pipeline.
  • A task is a discreet unit of work that the Data Pipeline service shares with a task runner and differs from a pipeline, which defines activities and resources that usually yields several tasks
  • Tasks can be executed either on the AWS Data Pipeline managed or user managed resources

Data Nodes

  • Data Node defines the location and type of data that a pipeline activity uses as source (input) or destination (output)
  • Data pipeline supports S3, Redshift, DynamoDB and SQL data nodes


  • Data Pipeline supports JDBC, RDS and Redshift database


  • An activity is a pipeline component that defines the work to perform
  • Data Pipeline provides pre defined activities for common scenarios like sql transformation, data movement, hive queries etc
  • Activities are extensible and can be used to run own custom scripts to support endless combinations


  • Precondition is a pipeline component containing conditional statements that must be satisfied (evaluated to True) before an activity can run
  • A pipeline supports
    • System-managed preconditions
      • are run by the AWS Data Pipeline web service on your behalf and do not require a computational resource
      • Includes source data and keys check for e.g. DynamoDB data, table exists or S3 key exists or prefix not empty
    • User-managed preconditions
      • run on user defined and managed computational resources
      • Can be defined as Exists check or Shell command


  • A resource is the computational resource that performs the work that a pipeline activity specifies
  • Data Pipeline supports AWS Data Pipeline-managed and self-managed resources
  • AWS Data Pipeline-managed resources include EC2 and EMR, which are launched by the Data Pipeline service only when they’re needed
  • Self managed on-premises resources can also be used, where a Task Runner package is installed which  continuously polls the AWS Data Pipeline service for work to perform
  • Resources can run in the same region as their working data set or even on a region different than AWS Data Pipeline
  • Resources launched by AWS Data Pipeline are counted within the resource limits and should be taken into account


  • Actions are steps that a pipeline takes when a certain event like success, failure occurs.
  • Pipeline supports SNS notifications and termination action on resources

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. An International company has deployed a multi-tier web application that relies on DynamoDB in a single region. For regulatory reasons they need disaster recovery capability in a separate region with a Recovery Time Objective of 2 hours and a Recovery Point Objective of 24 hours. They should synchronize their data on a regular basis and be able to provision the web application rapidly using CloudFormation. The objective is to minimize changes to the existing web application, control the throughput of DynamoDB used for the synchronization of data and synchronize only the modified elements. Which design would you choose to meet these requirements?
    1. Use AWS data Pipeline to schedule a DynamoDB cross region copy once a day. Create a ‘Lastupdated’ attribute in your DynamoDB table that would represent the timestamp of the last update and use it as a filter. (Refer Blog Post)
    2. Use EMR and write a custom script to retrieve data from DynamoDB in the current region using a SCAN operation and push it to DynamoDB in the second region. (No Schedule and throughput control)
    3. Use AWS data Pipeline to schedule an export of the DynamoDB table to S3 in the current region once a day then schedule another task immediately after it that will import data from S3 to DynamoDB in the other region. (With AWS Data pipeline the data can be copied directly to other DynamoDB table)
    4. Send each item into an SQS queue in the second region; use an auto-scaling group behind the SQS queue to replay the write in the second region. (Not Automated to replay the write)
  2. Your company produces customer commissioned one-of-a-kind skiing helmets combining nigh fashion with custom technical enhancements. Customers can show off their Individuality on the ski slopes and have access to head-up-displays, GPS rear-view cams and any other technical innovation they wish to embed in the helmet. The current manufacturing process is data rich and complex including assessments to ensure that the custom electronics and materials used to assemble the helmets are to the highest standards. Assessments are a mixture of human and automated assessments you need to add a new set of assessment to model the failure modes of the custom electronics using GPUs with CUD across a cluster of servers with low latency networking. What architecture would allow you to automate the existing process using a hybrid approach and ensure that the architecture can support the evolution of processes over time?
    1. Use AWS Data Pipeline to manage movement of data & meta-data and assessments. Use an auto-scaling group of G2 instances in a placement group. (Involves mixture of human assessments)
    2. Use Amazon Simple Workflow (SWF) to manage assessments, movement of data & meta-data. Use an autoscaling group of G2 instances in a placement group. (Human and automated assessments with GPU and low latency networking)
    3. Use Amazon Simple Workflow (SWF) to manage assessments movement of data & meta-data. Use an autoscaling group of C3 instances with SR-IOV (Single Root I/O Virtualization). (C3 and SR-IOV won’t provide GPU as well as Enhanced networking needs to be enabled)
    4. Use AWS data Pipeline to manage movement of data & meta-data and assessments use auto-scaling group of C3 with SR-IOV (Single Root I/O virtualization). (Involves mixture of human assessments)