AWS IAM Best Practices

AWS IAM Best Practices

AWS recommends the following AWS Identity and Access Management service – IAM Best Practices to secure AWS resources

Root Account – Don’t use & Lock away access keys

  • Do not use the AWS Root account which has full access to all the AWS resources and services including the Billing information.
  • Permissions associated with the AWS Root account cannot be restricted.
  • Do not generate the access keys, if not required
  • If already generated and not needed, delete the access keys.
  • If access keys are needed, rotate (change) the access key regularly
  • Never share the Root account credentials or access keys, instead create IAM users or Roles to grant granular access
  • Enable AWS multifactor authentication (MFA) on the AWS account

User – Create individual IAM users

  • Don’t use the AWS root account credentials to access AWS, and don’t share the credentials with anyone else.
  • Start by creating an IAM User with an Administrator role that has access to all resources as the Root except the account’s security credentials.
  • Create individual users for anyone who needs access to your AWS account and gives each user unique credentials and grant different permissions.

Groups – Use groups to assign permissions to IAM users

  • Instead of defining permissions for individual IAM users, create groups and define the relevant permissions for each group as per the job function, and then associate IAM users to those groups.
  • Users in an IAM group inherit the permissions assigned to the group and a User can belong to multiple groups
  • It is much easier to add new users, remove users and modify the permissions of a group of users.

Permission – Grant least privilege

  • IAM user, by default, is created with no permissions
  • Users should be granted LEAST PRIVILEGE as required to perform a task.
  • Starting with minimal permissions and adding to the permissions as required to perform the job function is far better than granting all access and trying to then tighten it down.

Passwords – Enforce strong password policy for users

  • Enforce users to create strong passwords and enforce them to rotate their passwords periodically.
  • Enable a strong password policy to define password requirements forcing users to create passwords with requirements like at least one capital letter, one number, and how frequently it should be rotated.

MFA – Enable MFA for privileged users

  • For extra security, Enable MultiFactor Authentication (MFA) for privileged IAM users, who are allowed access to sensitive resources or APIs.

Role – Use temporary credentials with IAM roles

  • Use roles for workloads instead of creating IAM user and hardcoding the credentials which can compromise the access and are also hard to rotate.
  • Roles have specific permissions and do not have a permanent set of credentials.
  • Roles provide a way to access AWS by relying on dynamically generated & automatically rotated temporary security credentials.
  • Roles  associated with it but dynamically provide temporary credentials that are automatically rotated

Sharing – Delegate using roles

  • Allow users from same AWS account, another AWS account, or externally authenticated users (either through any corporate authentication service or through Google, Facebook etc) to use IAM roles to specify the permissions which can then be assumed by them
  • A role can be defined that specifies what permissions the IAM users in the other account are allowed, and from which AWS accounts the IAM users are allowed to assume the role

Rotation – Rotate credentials regularly

  • Change your own passwords and access keys regularly and enforce it through a strong password policy. So even if a password or access key is compromised without your knowledge, you limit how long the credentials can be used to access your resources
  • Access keys allows creation of 2 active keys at the same time for an user. These can be used to rotate the keys.

Track & Review – Remove unnecessary credentials

  • Remove IAM user and credentials (that is, passwords and access keys) that are not needed.
  • Use the IAM Credential report that lists all IAM users in the account and the status of their various credentials, including passwords, access keys, and MFA devices and usage patterns to figure out what can be removed
  • Passwords and access keys that have not been used recently might be good candidates for removal.

Conditions – Use policy conditions for extra security

  • Define conditions under which IAM policies allow access to a resource.
  • Conditions would help provide finer access control to the AWS services and resources for e.g. access limited to a specific IP range or allowing only encrypted requests for uploads to S3 buckets etc.

Auditing – Monitor activity in the AWS account

  • Enable logging features provided through CloudTrail, S3, CloudFront in AWS to determine the actions users have taken in the account and the resources that were used.
  • Log files show the time and date of actions, the source IP for an action, which actions failed due to inadequate permissions, and more.

Use IAM Access Analyzer

  • IAM Access Analyzer analyzes the services and actions that the IAM roles use, and then generates a least-privilege policy that you can use.
  • Access Analyzer helps preview and analyze public and cross-account access for supported resource types by reviewing the generated findings.
  • IAM Access Analyzer helps to validate the policies created to ensure that they adhere to the IAM policy language (JSON) and IAM best practices.

Use Permissions Boundaries

  • Use IAM Permissions Boundaries to delegate permissions management within an account
  • IAM permissions boundaries help set the maximum permissions that you delegate and that an identity-based policy can grant to an IAM role.
  • A permissions boundary does not grant permissions on its own.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. Your organization is preparing for a security assessment of your use of AWS. In preparation for this assessment, which two IAM best practices should you consider implementing? Choose 2 answers
    1. Create individual IAM users for everyone in your organization (May not be needed as can use Roles as well)
    2. Configure MFA on the root account and for privileged IAM users
    3. Assign IAM users and groups configured with policies granting least privilege access
    4. Ensure all users have been assigned and are frequently rotating a password, access ID/secret key, and X.509 certificate (Must be assigned only if using console or through command line)
  2. What are the recommended best practices for IAM? (Choose 3 answers)
    1. Grant least privilege
    2. User the AWS account(root) for regular user
    3. Use Mutli-Factor Authentication (MFA)
    4. Store access key/private key in git
    5. Rotate credentials regularly
  3. Which of the below mentioned options is not a best practice to securely manage the AWS access credentials?
    1. Enable MFA for privileged users
    2. Create individual IAM users
    3. Keep rotating your secure access credentials at regular intervals
    4. Create strong access key and secret access key and attach to the root account
  4. Your CTO is very worried about the security of your AWS account. How best can you prevent hackers from completely hijacking your account?
    1. Use short but complex password on the root account and any administrators.
    2. Use AWS IAM Geo-Lock and disallow anyone from logging in except for in your city.
    3. Use MFA on all users and accounts, especially on the root account. (For increased security, it is recommend to configure MFA to help protect AWS resources)
    4. Don’t write down or remember the root account password after creating the AWS account.
  5. Fill the blanks: ____ helps us track AWS API calls and transitions, ____ helps to understand what resources we have now, and ____ allows auditing credentials and logins.
    1. AWS Config, CloudTrail, IAM Credential Reports
    2. CloudTrail, IAM Credential Reports, AWS Config
    3. CloudTrail, AWS Config, IAM Credential Reports
    4. AWS Config, IAM Credential Reports, CloudTrail

References

AWS IAM Roles vs Resource Based Policies

AWS IAM Roles vs Resource-Based Policies

AWS allows granting cross-account access to AWS resources, which can be done using IAM Roles or Resource-Based Policies.

IAM Roles

  • Roles can be created to act as a proxy to allow users or services to access resources.
  • Roles support
    • trust policy which helps determine who can access the resources and
    • permission policy which helps to determine what they can access.
  • Users who assume a role temporarily give up their own permissions and instead take on the permissions of the role. The original user permissions are restored when the user exits or stops using the role.
  • Roles can be used to provide access to almost all the AWS resources.
  • Permissions provided to the User through the Role can be further restricted per user by passing an optional policy to the STS request. This policy cannot be used to elevate privileges beyond what the assumed role is allowed to access

Resource-based Policies

  • Resource-based policy allows you to attach a policy directly to the resource you want to share, instead of using a role as a proxy.
  • Resource-based policy specifies the Principal, in the form of a list of AWS account ID numbers, can access that resource and what they can access.
  • Using cross-account access with a resource-based policy, the User still works in the trusted account and does not have to give up their permissions in place of the role permissions.
  • Users can work on the resources from both accounts at the same time and this can be useful for scenarios e.g. copying objects from one bucket to the other bucket in a different AWS account.
  • Resources that you want to share are limited to resources that support resource-based policies
  • Resource-based policies need the trusted account to create users with permissions to be able to access the resources from the trusted account.
  • Only permissions equivalent to, or less than, the permissions granted to your account by the resource owning account can be delegated.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. What are the two permission types used by AWS?
    1. Resource-based and Product-based
    2. Product-based and Service-based
    3. Service-based
    4. User-based and Resource-based
  2. What’s the policy used for cross-account access? (Choose 2)
    1. Trust policy
    2. Permissions Policy
    3. Key policy

References

AWS IAM Access Management

IAM Access Policies

IAM Access Management

  • IAM Access Management is all about Permissions and Policies.
  • Permission help define who has access & what actions can they perform.
  • IAM Policy helps to fine-tune the permissions granted to the policy owner
  • IAM Policy is a document that formally states one or more permissions.
  • Most restrictive Policy always wins
  • IAM Policy is defined in the JSON (JavaScript Object Notation) format

IAM policy basically states “Principal A is allowed or denied (Effect) to perform Action B on Resource C given Conditions D are satisfied”

IAM Access Policies

  • An Entity can be associated with Multiple Policies and a Policy can have multiple statements where each statement in a policy refers to a single permission.
  • If the policy includes multiple statements, a logical OR is applied across the statements at evaluation time. Similarly, if multiple policies are applicable to a request, a logical OR is applied across the policies at evaluation time.
  • Principal can either be specified within the Policy for Resource based policies while for Identity based policies the principal is the user, group, or role to which the policy is attached.

Identity-Based vs Resource-Based Permissions

Identity-based, or IAM permissions

  • Identity-based or IAM permissions are attached to an IAM user, group, or role and specify what the user, group, or role can do.
  • User, group, or the role itself acts as a Principal.
  • IAM permissions can be applied to almost all the AWS services.
  • IAM Policies can either be inline or managed (AWS or Customer).
  • IAM Policy’s current version is 2012-10-17.

Resource-based permissions

  • Resource-based permissions are attached to a resource for e.g. S3, SNS 
  • Resource-based permissions specify both who has access to the resource (Principal) and what actions they can perform on it (Actions)
  • Resource-based policies are inline only, not managed.
  • Resource-based permissions are supported only by some AWS services
  • Resource-based policies can be defined with version 2012-10-17 or 2008-10-17

Managed Policies and Inline Policies

  • Managed policies
    • Managed policies are Standalone policies that can be attached to multiple users, groups, and roles in an AWS account.
    • Managed policies apply only to identities (users, groups, and roles) but not to resources.
    • Managed policies allow reusability
    • Managed policy changes are implemented as versions (limited to 5), an new change to the existing policy creates a new version which is useful to compare the changes and revert back, if needed
    • Managed policies have their own ARN
    • Two types of managed policies:
      • AWS managed policies
        • Managed policies that are created and managed by AWS.
        • AWS maintains and can upgrades these policies for e.g. if a new service is introduced, the changes automatically effects all the existing principals attached to the policy
        • AWS takes care of not breaking the policies for e.g. adding an restriction of removal of permission
        • Managed policies cannot be modified
      • Customer managed policies
        • Managed policies are standalone and custom policies created and administered by you.
        • Customer managed policies allows more precise control over the policies than when using AWS managed policies.
  • Inline policies
    • Inline policies are created and managed by you, and are embedded directly into a single user, group, or role.
    • Deletion of the Entity (User, Group or Role) or Resource deletes the In-Line policy as well

ABAC – Attribute-Based Access Control

  • ABAC – Attribute-based access control is an authorization strategy that defines permissions based on attributes called tags.
  • ABAC policies can be designed to allow operations when the principal’s tag matches the resource tag.
  • ABAC is helpful in environments that are growing rapidly and help with situations where policy management becomes cumbersome.
  • ABAC policies are easier to manage as different policies for different job functions need not be created.
  • Complements RBAC for granular permissions, with RBAC allowing access to only specific resources and ABAC can allow actions on all resources, but only if the resource tag matches the principal’s tag.
  • ABAC can help use employee attributes from the corporate directory with federation where attributes are applied to their resulting principal.

IAM Permissions Boundaries

  • Permissions boundary allows using a managed policy to set the maximum permissions that an identity-based policy can grant to an IAM entity.
  • Permissions boundary allows it to perform only the actions that are allowed by both its identity-based policies and its permissions boundaries.
  • Permissions boundary supports both the AWS-managed policy and the customer-managed policy to set the boundary for an IAM entity.
  • Permissions boundary can be applied to an IAM entity (user or role ) but is not supported for IAM Group.
  • Permissions boundary does not grant permissions on its own.

IAM Policy Simulator

  • IAM Policy Simulator helps test and troubleshoot IAM and resource-based policies
  • IAM Policy Simulator can help test the following ways:-
    • Test IAM based policies. If multiple policies are attached, you can test all the policies or select individual policies to test. You can test which actions are allowed or denied by the selected policies for specific resources.
    • Test Resource based policies. However, Resource-based policies cannot be tested standalone and have to be attached to the Resource
    • Test new IAM policies that are not yet attached to a user, group, or role by typing or copying them into the simulator. These are used only in the simulation and are not saved.
    • Test the policies with selected services, actions, and resources
    • Simulate real-world scenarios by providing context keys, such as an IP address or date, that are included in Condition elements in the policies being tested.
    • Identify which specific statement in a policy results in allowing or denying access to a particular resource or action.
  • IAM Policy Simulator does not make an actual AWS service request and hence does not make unwanted changes to the AWS live environment
  • IAM Policy Simulator just reports the result Allowed or Denied
  • IAM Policy Simulator allows to you modify the policy and test. These changes are not propagated to the actual policies attached to the entities
  • Introductory Video for Policy Simulator

IAM Policy Evaluation

When determining if permission is allowed, the hierarchy is followed

IAM Permission Policy Evaluation

  1. Decision allows starts with Deny.
  2. IAM combines and evaluates all the policies.
  3. Explicit Deny
    • First IAM checks for an explicit denial policy.
    • Explicit Deny overrides everything and if something is explicitly denied it can never be allowed.
  4. Explicit Allow
    • If one does not exist, it then checks for an explicit allow policy.
    • For granting the User any permission, the permission must be explicitly allowed
  5. Implicit Deny
    • If neither an explicit deny nor explicit allow policy exists, it reverts to the default: implicit deny.
    • All permissions are implicity denied by default

IAM Policy Variables

  • Policy variables provide a feature to specify placeholders in a policy.
  • When the policy is evaluated, the policy variables are replaced with values that come from the request itself
  • Policy variables allow a single policy to be applied to a group of users to control access for e.g. all user having access to S3 bucket folder with their name only
  • Policy variable is marked using a $ prefix followed by a pair of curly braces ({ }). Inside the ${ } characters, with the name of the value from the request that you want to use in the policy
  • Policy variables work only with policies defined with Version 2012-10-17
  • Policy variables can only be used in the Resource element and in string comparisons in the Condition element
  • Policy variables are case sensitive and include variables like aws:username, aws:userid, aws:SourceIp, aws:CurrentTime etc.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. IAM’s Policy Evaluation Logic always starts with a default ____________ for every request, except for those that use the AWS account’s root security credentials b
    1. Permit
    2. Deny
    3. Cancel
  2. An organization has created 10 IAM users. The organization wants each of the IAM users to have access to a separate DynamoDB table. All the users are added to the same group and the organization wants to setup a group level policy for this. How can the organization achieve this?
    1. Define the group policy and add a condition which allows the access based on the IAM name
    2. Create a DynamoDB table with the same name as the IAM user name and define the policy rule which grants access based on the DynamoDB ARN using a variable
    3. Create a separate DynamoDB database for each user and configure a policy in the group based on the DB variable
    4. It is not possible to have a group level policy which allows different IAM users to different DynamoDB Tables
  3. An organization has setup multiple IAM users. The organization wants that each IAM user accesses the IAM console only within the organization and not from outside. How can it achieve this?
    1. Create an IAM policy with the security group and use that security group for AWS console login
    2. Create an IAM policy with a condition which denies access when the IP address range is not from the organization
    3. Configure the EC2 instance security group which allows traffic only from the organization’s IP range
    4. Create an IAM policy with VPC and allow a secure gateway between the organization and AWS Console
  4. Can I attach more than one policy to a particular entity?
    1. Yes always
    2. Only if within GovCloud
    3. No
    4. Only if within VPC
  5. A __________ is a document that provides a formal statement of one or more permissions.
    1. policy
    2. permission
    3. Role
    4. resource
  6. A __________ is the concept of allowing (or disallowing) an entity such as a user, group, or role some type of access to one or more resources.
    1. user
    2. AWS Account
    3. resource
    4. permission
  7. True or False: When using IAM to control access to your RDS resources, the key names that can be used are case sensitive. For example, aws:CurrentTime is NOT equivalent to AWS:currenttime.
    1. TRUE
    2. FALSE (Refer link)
  8. A user has set an IAM policy where it allows all requests if a request from IP 10.10.10.1/32. Another policy allows all the requests between 5 PM to 7 PM. What will happen when a user is requesting access from IP 10.10.10.1/32 at 6 PM?
    1. IAM will throw an error for policy conflict
    2. It is not possible to set a policy based on the time or IP
    3. It will deny access
    4. It will allow access
  9. Which of the following are correct statements with policy evaluation logic in AWS Identity and Access Management? Choose 2 answers.
    1. By default, all requests are denied
    2. An explicit allow overrides an explicit deny
    3. An explicit allow overrides default deny
    4. An explicit deny does not override an explicit allow
    5. By default, all request are allowed
  10. A web design company currently runs several FTP servers that their 250 customers use to upload and download large graphic files. They wish to move this system to AWS to make it more scalable, but they wish to maintain customer privacy and keep costs to a minimum. What AWS architecture would you recommend? [PROFESSIONAL]
    1. Ask their customers to use an S3 client instead of an FTP client. Create a single S3 bucket. Create an IAM user for each customer. Put the IAM Users in a Group that has an IAM policy that permits access to subdirectories within the bucket via use of the ‘username’ Policy variable.
    2. Create a single S3 bucket with Reduced Redundancy Storage turned on and ask their customers to use an S3 client instead of an FTP client. Create a bucket for each customer with a Bucket Policy that permits access only to that one customer. (Creating bucket for each user is not a scalable model, also 100 buckets are a limit earlier without extending which has since changed link)
    3. Create an auto-scaling group of FTP servers with a scaling policy to automatically scale-in when minimum network traffic on the auto-scaling group is below a given threshold. Load a central list of ftp users from S3 as part of the user Data startup script on each Instance (Expensive)
    4. Create a single S3 bucket with Requester Pays turned on and ask their customers to use an S3 client instead of an FTP client. Create a bucket tor each customer with a Bucket Policy that permits access only to that one customer. (Creating bucket for each user is not a scalable model, also 100 buckets are a limit earlier without extending which has since changed link)

AWS Identity Services Cheat Sheet

AWS Identity Services Cheat Sheet

AWS Identity and Security Services

IAM – Identity & Access Management

  • securely control access to AWS services and resources
  • helps create and manage user identities and grant permissions for those users to access AWS resources
  • helps create groups for multiple users with similar permissions
  • not appropriate for application authentication
  • is Global and does not need to be migrated to a different region
  • helps define Policies,
    • in JSON format
    • all permissions are implicitly denied by default
    • most restrictive policy wins
  • IAM Role
    • helps grants and delegate access to users and services without the need of creating permanent credentials
    • IAM users or AWS services can assume a role to obtain temporary security credentials that can be used to make AWS API calls
    • needs Trust policy to define who and Permission policy to define what the user or service can access
    • used with Security Token Service (STS), a lightweight web service that provides temporary, limited privilege credentials for IAM users or for authenticated federated users
    • IAM role scenarios
      • Service access for e.g. EC2 to access S3 or DynamoDB
      • Cross Account access for users
        • with user within the same account
        • with user within an AWS account owned the same owner
        • with user from a Third Party AWS account with External ID for enhanced security
      • Identity Providers & Federation
        • AssumeRoleWithWebIdentity – Web Identity Federation, where the user can be authenticated using external authentication Identity providers like Amazon, Google or any OpenId IdP
        • AssumeRoleWithSAML – Identity Provider using SAML 2.0, where the user can be authenticated using on premises Active Directory, Open Ldap or any SAML 2.0 compliant IdP
        • AssumeRole (recommended) or GetFederationToken – For other Identity Providers, use Identity Broker to authenticate and provide temporary Credentials
  • IAM Best Practices
    • Do not use Root account for anything other than billing
    • Create Individual IAM users
    • Use groups to assign permissions to IAM users
    • Grant least privilege
    • Use IAM roles for applications on EC2
    • Delegate using roles instead of sharing credentials
    • Rotate credentials regularly
    • Use Policy conditions for increased granularity
    • Use CloudTrail to keep a history of activity
    • Enforce a strong IAM password policy for IAM users
    • Remove all unused users and credentials

AWS Organizations

  • is an account management service that enables consolidating multiple AWS accounts into an organization that can be centrally managed.
  • include consolidated billing and account management capabilities that enable one to better meet the budgetary, security, and compliance needs of your business.
  • As an administrator of an organization, new accounts can be created in an organization and invite existing accounts to join the organization.
  • enables you to
    • Automate AWS account creation and management, and provision resources with AWS CloudFormation Stacksets.
    • Maintain a secure environment with policies and management of AWS security services
    • Govern access to AWS services, resources, and regions
    • Centrally manage policies across multiple AWS accounts
    • Audit your environment for compliance 
    • View and manage costs with consolidated billing 
    • Configure AWS services across multiple accounts 
  • supports Service Control Policies – SCPs
  • offer central control over the maximum available permissions for all of the accounts in your organization, ensuring member accounts stay within the organization’s access control guidelines.
  • are one type of policy that help manage the organization.
  • are available only in an organization that has all features enabled, and aren’t available if the organization has enabled only the consolidated billing features.
  • are NOT sufficient for granting access to the accounts in the organization.
  • defines a guardrail for what actions accounts within the organization root or OU can do, but IAM policies need to be attached to the users and roles in the organization’s accounts to grant permissions to them.
  • Effective permissions are the logical intersection between what is allowed by the SCP and what is allowed by the IAM and resource-based policies.
  • with an SCP attached to member accounts, identity-based and resource-based policies grant permissions to entities only if those policies and the SCP allow the action
  • don’t affect users or roles in the management account. They affect only the member accounts in your organization.

AWS Directory Services

  • gives applications in AWS access to Active Directory services
  • different from SAML + AD, where the access is granted to AWS services through Temporary Credentials
  • Simple AD
    • least expensive but does not support Microsoft AD advanced features
    • provides a Samba 4 Microsoft Active Directory compatible standalone directory service on AWS
    • No single point of Authentication or Authorization, as a separate copy is maintained
    • trust relationships cannot be setup between Simple AD and other Active Directory domains
    • Don’t use it, if the requirement is to leverage access and control through centralized authentication service
  • AD Connector
    • acts just as an hosted proxy service for instances in AWS to connect to on-premises Active Directory
    • enables consistent enforcement of existing security policies, such as password expiration, password history, and account lockouts, whether users are accessing resources on-premises or in the AWS cloud
    • needs VPN connectivity (or Direct Connect)
    • integrates with existing RADIUS-based MFA solutions to enabled multi-factor authentication
    • does not cache data which might lead to latency
  • Read-only Domain Controllers (RODCs)
    • works out as a Read-only Active Directory
    • holds a copy of the Active Directory Domain Service (AD DS) database and respond to authentication requests
    • they cannot be written to and are typically deployed in locations where physical security cannot be guaranteed
    • helps maintain a single point to authentication & authorization controls, however needs to be synced
  • Writable Domain Controllers
    • are expensive to setup
    • operate in a multi-master model; changes can be made on any writable server in the forest, and those changes are replicated to servers throughout the entire forest

AWS Single Sign-On SSO

  • is a cloud-based single sign-on (SSO) service that makes it easy to centrally manage SSO access to all of the AWS accounts and cloud applications.
  • helps manage access and permissions to commonly used third-party software as a service (SaaS) applications, AWS SSO-integrated applications as well as custom applications that support SAML 2.0.
  • includes a user portal where the end-users can find and access all their assigned AWS accounts, cloud applications, and custom applications in one place.

Amazon Cognito

  • Amazon Cognito provides authentication, authorization, and user management for the web and mobile apps.
  • Users can sign in directly with a username and password, or through a third party such as Facebook, Amazon, Google, or Apple.
  • Cognito has two main components.
    • User pools are user directories that provide sign-up and sign-in options for the app users.
    • Identity pools enable you to grant the users access to other AWS services.
  • Cognito Sync helps synchronize data across a user’s devices so that their app experience remains consistent when they switch between devices or upgrade to a new device.

IAM Role – Identity Providers and Federation

IAM Role – Identity Providers and Federation

  • Identity Provider can be used to grant external user identity permissions to AWS resources without having to be created within your AWS account.
  • External user identities can be authenticated either through the organization’s authentication system or through a well-known identity provider such as Amazon, Google, etc.
  • Identity providers help keep the AWS account secure without having the need to distribute or embed long-term in the application
  • To use an IdP, an IAM identity provider entity can be created to establish a trust relationship between the AWS account and the IdP.
  • IAM supports IdPs that are compatible with OpenID Connect (OIDC) or SAML 2.0 (Security Assertion Markup Language 2.0)

Web Identity Federation without Cognito

IAM Web Identity Federation

  1. Mobile or Web Application needs to be configured with the IdP which gives each application a unique ID or client ID (also called audience)
  2. Create an Identity Provider entity for OIDC compatible IdP in IAM.
  3. Create an IAM role and define the
    1. Trust policy – specify the IdP (like Amazon) as the Principal (the trusted entity), and include a Condition that matches the IdP assigned app ID
    2. Permission policy – specify the permissions the application can assume
  4. Application calls the sign-in interface for the IdP to login
  5. IdP authenticates the user and returns an authentication token (OAuth access token or OIDC ID token) with information about the user to the application
  6. Application then makes an unsigned call to the STS service with the AssumeRoleWithWebIdentity action to request temporary security credentials.
  7. Application passes the IdP’s authentication token along with the Amazon Resource Name (ARN) for the IAM role created for that IdP.
  8. AWS verifies that the token is trusted and valid and if so, returns temporary security credentials (access key, secret access key, session token, expiry time) to the application that has the permissions for the role that you name in the request.
  9. STS response also includes metadata about the user from the IdP, such as the unique user ID that the IdP associates with the user.
  10. Application makes signed requests to AWS using the Temporary credentials
  11. User ID information from the identity provider can distinguish users in the app for e.g., objects can be put into S3 folders that include the user ID as prefixes or suffixes. This lets you create access control policies that lock the folder so only the user with that ID can access it.
  12. Application can cache the temporary security credentials and refresh them before their expiry accordingly. Temporary credentials, by default, are good for an hour.

Interactive Website provides a very good way to understand the flow

Mobile or Web Identity Federation with Cognito

  • Amazon Cognito as the identity broker is a recommended for almost all web identity federation scenarios
  • Cognito is easy to use and provides additional capabilities like anonymous (unauthenticated) access
  • Cognito supports anonymous users, MFA and also helps synchronizing user data across devices and providers

Web Identify Federation using Cognito

SAML 2.0-based Federation

  • AWS supports identity federation with SAML 2.0 (Security Assertion Markup Language 2.0), an open standard used by many identity providers (IdPs).
  • SAML 2.0 based federation feature enables federated single sign-on (SSO),  so users can log into the AWS Management Console or call the AWS APIs without having to create an IAM user for everyone in the organization
  • SAML helps simplify the process of configuring federation with AWS by using the IdP’s service instead of writing custom identity proxy code.
  • This is useful in organizations that have integrated their identity systems (such as Windows Active Directory or OpenLDAP) with software that can produce SAML assertions to provide information about user identity and permissions (such as Active Directory Federation Services or Shibboleth)

SAML based Federation

  1. Create a SAML provider entity in AWS using the SAML metadata document provided by the Organizations IdP to establish a “trust” between your AWS account and the IdP
  2. SAML metadata document includes the issuer name, a creation date, an expiration date, and keys that AWS can use to validate authentication responses (assertions) from your organization.
  3. Create IAM roles which define
    1. Trust policy with the SAML provider as the principal, which establishes a trust relationship between the organization and AWS
    2. Permission policy establishes what users from the organization are allowed to do in AWS
  4. SAML trust is completed by configuring the Organization’s IdP with information about AWS and the role(s) that you want the federated users to use. This is referred to as configuring relying party trust between your IdP and AWS
  5. Application calls the sign-in interface for the Organization IdP to login
  6. IdP authenticates the user and generates a SAML authentication response which includes assertions that identify the user and include attributes about the user
  7. Application then makes an unsigned call to the STS service with the AssumeRoleWithSAML action to request temporary security credentials.
  8. Application passes the ARN of the SAML provider, the ARN of the role to assume, the SAML assertion about the current user returned by IdP, and the time for which the credentials should be valid. An optional IAM Policy parameter can be provided to further restrict the permissions to the user
  9. AWS verifies that the SAML assertion is trusted and valid and if so, returns temporary security credentials (access key, secret access key, session token, expiry time) to the application that has the permissions for the role named in the request.
  10. STS response also includes metadata about the user from the IdP, such as the unique user ID that the IdP associates with the user.
  11. Using the Temporary credentials, the application makes signed requests to AWS to access the services
  12. Application can cache the temporary security credentials and refresh them before their expiry accordingly. Temporary credentials, by default, are good for an hour.

AWS SSO with SAML

  • SAML 2.0 based federation can also be used to grant access to the federated users to the AWS Management console.
  • This requires the use of the AWS SSO endpoint instead of directly calling the AssumeRoleWithSAML API.
  • The endpoint calls the API for the user and returns a URL that automatically redirects the user’s browser to the AWS Management Console.

SAML based SSO to AWS Console

  1. User browses the organization’s portal and selects the option to go to the AWS Management Console.
  2. Portal performs the function of the identity provider (IdP) that handles the exchange of trust between the organization and AWS.
  3. Portal verifies the user’s identity in the organization.
  4. Portal generates a SAML authentication response that includes assertions that identify the user and include attributes about the user.
  5. Portal sends this response to the client browser.
  6. Client browser is redirected to the AWS SSO endpoint and posts the SAML assertion.
  7. AWS SSO endpoint handles the call for the AssumeRoleWithSAML API action on the user’s behalf and requests temporary security credentials from STS and creates a console sign-in URL that uses those credentials.
  8. AWS sends the sign-in URL back to the client as a redirect.
  9. Client browser is redirected to the AWS Management Console. If the SAML authentication response includes attributes that map to multiple IAM roles, the user is first prompted to select the role to use for access to the console.

Custom Identity Broker Federation

Custom Identity broker Federation

  • If the Organization doesn’t support SAML-compatible IdP, a Custom Identity Broker can be used to provide the access.
  • Custom Identity Broker should perform the following steps
    • Verify that the user is authenticated by the local identity system.
    • Call the AWS STS AssumeRole (recommended) or GetFederationToken (by default, has an expiration period of 36 hours) APIs to obtain temporary security credentials for the user.
    • Temporary credentials limit the permissions a user has to the AWS resource
    • Call an AWS federation endpoint and supply the temporary security credentials to get a sign-in token.
    • Construct a URL for the console that includes the token.
    • URL that the federation endpoint provides is valid for 15 minutes after it is created.
    • Give the URL to the user or invoke the URL on the user’s behalf.

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. A photo-sharing service stores pictures in Amazon Simple Storage Service (S3) and allows application sign-in using an OpenID Connect-compatible identity provider. Which AWS Security Token Service approach to temporary access should you use for the Amazon S3 operations?
    1. SAML-based Identity Federation
    2. Cross-Account Access
    3. AWS IAM users
    4. Web Identity Federation
  2. Which technique can be used to integrate AWS IAM (Identity and Access Management) with an on-premise LDAP (Lightweight Directory Access Protocol) directory service?
    1. Use an IAM policy that references the LDAP account identifiers and the AWS credentials.
    2. Use SAML (Security Assertion Markup Language) to enable single sign-on between AWS and LDAP
    3. Use AWS Security Token Service from an identity broker to issue short-lived AWS credentials. (Refer Link)
    4. Use IAM roles to automatically rotate the IAM credentials when LDAP credentials are updated.
    5. Use the LDAP credentials to restrict a group of users from launching specific EC2 instance types.
  3. You are designing a photo sharing mobile app the application will store all pictures in a single Amazon S3 bucket. Users will upload pictures from their mobile device directly to Amazon S3 and will be able to view and download their own pictures directly from Amazon S3. You want to configure security to handle potentially millions of users in the most secure manner possible. What should your server-side application do when a new user registers on the photo-sharing mobile application? [PROFESSIONAL]
    1. Create a set of long-term credentials using AWS Security Token Service with appropriate permissions Store these credentials in the mobile app and use them to access Amazon S3.
    2. Record the user’s Information in Amazon RDS and create a role in IAM with appropriate permissions. When the user uses their mobile app create temporary credentials using the AWS Security Token Service ‘AssumeRole’ function. Store these credentials in the mobile app’s memory and use them to access Amazon S3. Generate new credentials the next time the user runs the mobile app.
    3. Record the user’s Information in Amazon DynamoDB. When the user uses their mobile app create temporary credentials using AWS Security Token Service with appropriate permissions. Store these credentials in the mobile app’s memory and use them to access Amazon S3 Generate new credentials the next time the user runs the mobile app.
    4. Create IAM user. Assign appropriate permissions to the IAM user Generate an access key and secret key for the IAM user, store them in the mobile app and use these credentials to access Amazon S3.
    5. Create an IAM user. Update the bucket policy with appropriate permissions for the IAM user Generate an access Key and secret Key for the IAM user, store them In the mobile app and use these credentials to access Amazon S3.
  4. Your company has recently extended its datacenter into a VPC on AWS to add burst computing capacity as needed Members of your Network Operations Center need to be able to go to the AWS Management Console and administer Amazon EC2 instances as necessary. You don’t want to create new IAM users for each NOC member and make those users sign in again to the AWS Management Console. Which option below will meet the needs for your NOC members? [PROFESSIONAL]
    1. Use OAuth 2.0 to retrieve temporary AWS security credentials to enable your NOC members to sign in to the AWS Management Console.
    2. Use Web Identity Federation to retrieve AWS temporary security credentials to enable your NOC members to sign in to the AWS Management Console.
    3. Use your on-premises SAML 2.O-compliant identity provider (IDP) to grant the NOC members federated access to the AWS Management Console via the AWS single sign-on (SSO) endpoint.
    4. Use your on-premises SAML 2.0-compliant identity provider (IDP) to retrieve temporary security credentials to enable NOC members to sign in to the AWS Management Console
  5. A corporate web application is deployed within an Amazon Virtual Private Cloud (VPC) and is connected to the corporate data center via an iPsec VPN. The application must authenticate against the on-premises LDAP server. After authentication, each logged-in user can only access an Amazon Simple Storage Space (S3) keyspace specific to that user. Which two approaches can satisfy these objectives? (Choose 2 answers) [PROFESSIONAL]
    1. Develop an identity broker that authenticates against IAM security Token service to assume a IAM role in order to get temporary AWS security credentials. The application calls the identity broker to get AWS temporary security credentials with access to the appropriate S3 bucket. (Needs to authenticate against LDAP and not IAM)
    2. The application authenticates against LDAP and retrieves the name of an IAM role associated with the user. The application then calls the IAM Security Token Service to assume that IAM role. The application can use the temporary credentials to access the appropriate S3 bucket. (Authenticates with LDAP and calls the AssumeRole)
    3. Develop an identity broker that authenticates against LDAP and then calls IAM Security Token Service to get IAM federated user credentials The application calls the identity broker to get IAM federated user credentials with access to the appropriate S3 bucket. (Custom Identity broker implementation, with authentication with LDAP and using federated token)
    4. The application authenticates against LDAP the application then calls the AWS identity and Access Management (IAM) Security Token service to log in to IAM using the LDAP credentials the application can use the IAM temporary credentials to access the appropriate S3 bucket. (Can’t login to IAM using LDAP credentials)
    5. The application authenticates against IAM Security Token Service using the LDAP credentials the application uses those temporary AWS security credentials to access the appropriate S3 bucket. (Need to authenticate with LDAP)
  6. Company B is launching a new game app for mobile devices. Users will log into the game using their existing social media account to streamline data capture. Company B would like to directly save player data and scoring information from the mobile app to a DynamoDB table named Score Data When a user saves their game the progress data will be stored to the Game state S3 bucket. what is the best approach for storing data to DynamoDB and S3? [PROFESSIONAL]
    1. Use an EC2 Instance that is launched with an EC2 role providing access to the Score Data DynamoDB table and the GameState S3 bucket that communicates with the mobile app via web services.
    2. Use temporary security credentials that assume a role providing access to the Score Data DynamoDB table and the Game State S3 bucket using web identity federation
    3. Use Login with Amazon allowing users to sign in with an Amazon account providing the mobile app with access to the Score Data DynamoDB table and the Game State S3 bucket.
    4. Use an IAM user with access credentials assigned a role providing access to the Score Data DynamoDB table and the Game State S3 bucket for distribution with the mobile app.
  7. A user has created a mobile application which makes calls to DynamoDB to fetch certain data. The application is using the DynamoDB SDK and root account access/secret access key to connect to DynamoDB from mobile. Which of the below mentioned statements is true with respect to the best practice for security in this scenario?
    1. User should create a separate IAM user for each mobile application and provide DynamoDB access with it
    2. User should create an IAM role with DynamoDB and EC2 access. Attach the role with EC2 and route all calls from the mobile through EC2
    3. The application should use an IAM role with web identity federation which validates calls to DynamoDB with identity providers, such as Google, Amazon, and Facebook
    4. Create an IAM Role with DynamoDB access and attach it with the mobile application
  8. You are managing the AWS account of a big organization. The organization has more than 1000+ employees and they want to provide access to the various services to most of the employees. Which of the below mentioned options is the best possible solution in this case?
    1. The user should create a separate IAM user for each employee and provide access to them as per the policy
    2. The user should create an IAM role and attach STS with the role. The user should attach that role to the EC2 instance and setup AWS authentication on that server
    3. The user should create IAM groups as per the organization’s departments and add each user to the group for better access control
    4. Attach an IAM role with the organization’s authentication service to authorize each user for various AWS services
  9. Your fortune 500 company has under taken a TCO analysis evaluating the use of Amazon S3 versus acquiring more hardware The outcome was that all employees would be granted access to use Amazon S3 for storage of their personal documents. Which of the following will you need to consider so you can set up a solution that incorporates single sign-on from your corporate AD or LDAP directory and restricts access for each user to a designated user folder in a bucket? (Choose 3 Answers) [PROFESSIONAL]
    1. Setting up a federation proxy or identity provider
    2. Using AWS Security Token Service to generate temporary tokens
    3. Tagging each folder in the bucket
    4. Configuring IAM role
    5. Setting up a matching IAM user for every user in your corporate directory that needs access to a folder in the bucket
  10. An AWS customer is deploying a web application that is composed of a front-end running on Amazon EC2 and of confidential data that is stored on Amazon S3. The customer security policy that all access operations to this sensitive data must be authenticated and authorized by a centralized access management system that is operated by a separate security team. In addition, the web application team that owns and administers the EC2 web front-end instances is prohibited from having any ability to access the data that circumvents this centralized access management system. Which of the following configurations will support these requirements? [PROFESSIONAL]
    1. Encrypt the data on Amazon S3 using a CloudHSM that is operated by the separate security team. Configure the web application to integrate with the CloudHSM for decrypting approved data access operations for trusted end-users. (S3 doesn’t integrate directly with CloudHSM, also there is no centralized access management system control)
    2. Configure the web application to authenticate end-users against the centralized access management system. Have the web application provision trusted users STS tokens entitling the download of approved data directly from Amazon S3 (Controlled access and admins cannot access the data as it needs authentication)
    3. Have the separate security team create and IAM role that is entitled to access the data on Amazon S3. Have the web application team provision their instances with this role while denying their IAM users access to the data on Amazon S3 (Web team would have access to the data)
    4. Configure the web application to authenticate end-users against the centralized access management system using SAML. Have the end-users authenticate to IAM using their SAML token and download the approved data directly from S3. (not the way SAML auth works and not sure if the centralized access management system is SAML complaint)
  11. What is web identity federation?
    1. Use of an identity provider like Google or Facebook to become an AWS IAM User.
    2. Use of an identity provider like Google or Facebook to exchange for temporary AWS security credentials.
    3. Use of AWS IAM User tokens to log in as a Google or Facebook user.
    4. Use of AWS STS Tokens to log in as a Google or Facebook user.
  12. Games-R-Us is launching a new game app for mobile devices. Users will log into the game using their existing Facebook account and the game will record player data and scoring information directly to a DynamoDB table. What is the most secure approach for signing requests to the DynamoDB API?
    1. Create an IAM user with access credentials that are distributed with the mobile app to sign the requests
    2. Distribute the AWS root account access credentials with the mobile app to sign the requests
    3. Request temporary security credentials using web identity federation to sign the requests
    4. Establish cross account access between the mobile app and the DynamoDB table to sign the requests
  13. You are building a mobile app for consumers to post cat pictures online. You will be storing the images in AWS S3. You want to run the system very cheaply and simply. Which one of these options allows you to build a photo sharing application without needing to worry about scaling expensive uploads processes, authentication/authorization and so forth?
    1. Build the application out using AWS Cognito and web identity federation to allow users to log in using Facebook or Google Accounts. Once they are logged in, the secret token passed to that user is used to directly access resources on AWS, like AWS S3. (Amazon Cognito is a superset of the functionality provided by web identity federation. Refer link)
    2. Use JWT or SAML compliant systems to build authorization policies. Users log in with a username and password, and are given a token they can use indefinitely to make calls against the photo infrastructure.
    3. Use AWS API Gateway with a constantly rotating API Key to allow access from the client-side. Construct a custom build of the SDK and include S3 access in it.
    4. Create an AWS oAuth Service Domain ad grant public signup and access to the domain. During setup, add at least one major social media site as a trusted Identity Provider for users.
  14. The Marketing Director in your company asked you to create a mobile app that lets users post sightings of good deeds known as random acts of kindness in 80-character summaries. You decided to write the application in JavaScript so that it would run on the broadest range of phones, browsers, and tablets. Your application should provide access to Amazon DynamoDB to store the good deed summaries. Initial testing of a prototype shows that there aren’t large spikes in usage. Which option provides the most cost-effective and scalable architecture for this application? [PROFESSIONAL]
    1. Provide the JavaScript client with temporary credentials from the Security Token Service using a Token Vending Machine (TVM) on an EC2 instance to provide signed credentials mapped to an Amazon Identity and Access Management (IAM) user allowing DynamoDB puts and S3 gets. You serve your mobile application out of an S3 bucket enabled as a web site. Your client updates DynamoDB. (Single EC2 instance not a scalable architecture)
    2. Register the application with a Web Identity Provider like Amazon, Google, or Facebook, create an IAM role for that provider, and set up permissions for the IAM role to allow S3 gets and DynamoDB puts. You serve your mobile application out of an S3 bucket enabled as a web site. Your client updates DynamoDB. (Can work with JavaScript SDK, is scalable and cost effective)
    3. Provide the JavaScript client with temporary credentials from the Security Token Service using a Token Vending Machine (TVM) to provide signed credentials mapped to an IAM user allowing DynamoDB puts. You serve your mobile application out of Apache EC2 instances that are load-balanced and autoscaled. Your EC2 instances are configured with an IAM role that allows DynamoDB puts. Your server updates DynamoDB. (Is Scalable but Not cost effective)
    4. Register the JavaScript application with a Web Identity Provider like Amazon, Google, or Facebook, create an IAM role for that provider, and set up permissions for the IAM role to allow DynamoDB puts. You serve your mobile application out of Apache EC2 instances that are load-balanced and autoscaled. Your EC2 instances are configured with an IAM role that allows DynamoDB puts. Your server updates DynamoDB. (Is Scalable but Not cost effective)

References

AWS IAM User Guide – Id Role Providers