AWS SageMaker Built-in Algorithms Summary

SageMaker Built-in Algorothms

SageMaker Built-in Algorithms

SageMaker Built-in Algorothms


BlazingText algorithm

  • provides highly optimized implementations of the Word2vec and text classification algorithms.
  • Word2vec algorithm
    • useful for many downstream natural language processing (NLP) tasks, such as sentiment analysis, named entity recognition, machine translation, etc.
    • maps words to high-quality distributed vectors, whose representation is called word embeddings
    • word embeddings capture the semantic relationships between words.
  • Text classification
    • is an important task for applications performing web searches, information retrieval, ranking, and document classification
  • provides the Skip-gram and continuous bag-of-words (CBOW) training architectures



  • is a supervised learning algorithm for forecasting scalar (one-dimensional) time series using recurrent neural networks (RNN).
  • use the trained model to generate forecasts for new time series that are similar to the ones it has been trained on.


Factorization Machine

  • is a general-purpose supervised learning algorithm used for both classification and regression tasks.
  • extension of a linear model designed to capture interactions between features within high dimensional sparse datasets economically, such as click prediction and item recommendation.


K-means algorithm

  • is an unsupervised learning algorithm for clustering
  • attempts to find discrete groupings within data, where members of a group are as similar as possible to one another and as different as possible from members of other groups


K-nearest neighbors (k-NN) algorithm

  • is an index-based algorithm.
  • uses a non-parametric method for classification or regression.
  • For classification problems, the algorithm queries the k points that are closest to the sample point and returns the most frequently used label of their class as the predicted label.
  • For regression problems, the algorithm queries the k closest points to the sample point and returns the average of their feature values as the predicted value.

Linear Learner

  • are supervised learning algorithms used for solving either classification or regression problems

XGBoost (eXtreme Gradient Boosting)

  • is a popular and efficient open-source implementation of the gradient boosted trees algorithm.
  • Gradient boosting is a supervised learning algorithm that attempts to accurately predict a target variable by combining an ensemble of estimates from a set of simpler, weaker models

Topic Modelling

Latent Dirichlet Allocation (LDA)

  • is an unsupervised learning algorithm that attempts to describe a set of observations as a mixture of distinct categories.
  • used to discover a user-specified number of topics shared by documents within a text corpus.

Neural Topic Model (NTM)

  • is an unsupervised learning algorithm that is used to organize a corpus of documents into topics that contain word groupings based on their statistical distribution
  • Topic modeling can be used to classify or summarize documents based on the topics detected or to retrieve information or recommend content based on topic similarities.

Feature Reduction


  • is a general-purpose neural embedding algorithm that is highly customizable
  • can learn low-dimensional dense embeddings of high-dimensional objects.

Principal Component Analysis – PCA

  • is an unsupervised machine learning algorithm that attempts to reduce the dimensionality (number of features) within a dataset while still retaining as much information as possible

Anomaly Detection

Random Cut Forest (RCF)

  • is an unsupervised algorithm for detecting anomalous data points within a data set.

IP Insights

  • is an unsupervised learning algorithm that learns the usage patterns for IPv4 addresses.
  • designed to capture associations between IPv4 addresses and various entities, such as user IDs or account numbers

Sequence Translation

Sequence to Sequence – seq2seq

  • is a supervised learning algorithm where the input is a sequence of tokens (for example, text, audio), and the output generated is another sequence of tokens.
  • key uses cases are machine translation (input a sentence from one language and predict what that sentence would be in another language), text summarization (input a longer string of words and predict a shorter string of words that is a summary), speech-to-text (audio clips converted into output sentences in tokens)

Computer Vision – CV

Image classification

  • a supervised learning algorithm that supports multi-label classification
  • takes an image as input and outputs one or more labels
  • uses a convolutional neural network (ResNet) that can be trained from scratch or trained using transfer learning when a large number of training images are not available.
  • recommended input format is Apache MXNet RecordIO. Also supports raw images in .jpg or .png format.

Object Detection

  • detects and classifies objects in images using a single deep neural network.
  • is a supervised learning algorithm that takes images as input and identifies all instances of objects within the image scene.

Semantic Segmentation

  • provides a fine-grained, pixel-level approach to developing computer vision applications.
  • tags every pixel in an image with a class label from a predefined set of classes and is critical to an increasing number of CV applications, such as self-driving vehicles, medical imaging diagnostics, and robot sensing.
  • also provides information about the shapes of the objects contained in the image. The segmentation output is represented as a grayscale image, called a segmentation mask.