AWS S3 Best Practices

S3 Best Practices

Performance

Multiple Concurrent PUTs/GETs

  • S3 scales to support very high request rates. If the request rate grows steadily, S3 automatically partitions the buckets as needed to support higher request rates.
  • S3 can achieve at least 3,500 PUT/COPY/POST/DELETE and 5,500 GET/HEAD requests per second per prefix in a bucket.
  • If the typical workload involves only occasional bursts of 100 requests per second and less than 800 requests per second, AWS scales and handle it.
  • If the typical workload involves request rate for a bucket to more than 300 PUT/LIST/DELETE requests per second or more than 800 GET requests per second, its recommended to open a support case to prepare for the workload and avoid any temporary limits on your request rate.
  • S3 best practice guidelines can be applied only if you are routinely processing 100 or more requests per second
  • Workloads that include a mix of request types
    • If the request workload are typically a mix of GET, PUT, DELETE, or GET Bucket (list objects), choosing appropriate key names for the objects ensures better performance by providing low-latency access to the S3 index
    • This behavior is driven by how S3 stores key names.
      • S3 maintains an index of object key names in each AWS region.
      • Object keys are stored lexicographically (UTF-8 binary ordering) across multiple partitions in the index i.e. S3 stores key names in alphabetical order.
      • Object keys are stored in across multiple partitions in the index and the key name dictates which partition the key is stored in
      • Using a sequential prefix, such as timestamp or an alphabetical sequence, increases the likelihood that S3 will target a specific partition for a large number of keys, overwhelming the I/O capacity of the partition.
    • Introduce some randomness in the key name prefixes, the key names, and the I/O load, will be distributed across multiple index partitions.
    • It also ensures scalability regardless of the number of requests sent per second.

GET-intensive Workloads

  • CloudFront can be used for performance optimization and can help by
    • distributing content with low latency and high data transfer rate.
    • caching the content and thereby reducing the number of direct requests to S3
    • providing multiple endpoints (Edge locations) for data availability
    • available in two flavors as Web distribution or RTMP distribution
  • To fast data transport over long distances between a client and an S3 bucket, use Amazon S3 Transfer Acceleration. Transfer Acceleration uses the globally distributed edge locations in CloudFront to accelerate data transport over geographical distances

PUTs/GETs for Large Objects

  • AWS allows Parallelizing the PUTs/GETs request to improve the upload and download performance as well as the ability to recover in case it fails
  • For PUTs, Multipart upload can help improve the uploads by
    • performing multiple uploads at the same time and maximizing network bandwidth utilization
    • quick recovery from failures, as only the part that failed to upload needs to be re-uploaded
    • ability to pause and resume uploads
    • begin an upload before the Object size is known
  • For GETs, range http header can help to improve the downloads by
    • allowing the object to be retrieved in parts instead of the whole object
    • quick recovery from failures, as only the part that failed to download needs to be retried.

List Operations

  • Object key names are stored lexicographically in S3 indexes, making it hard to sort and manipulate the contents of LIST
  • S3 maintains a single lexicographically sorted list of indexes
  • Build and maintain Secondary Index outside of S3 for e.g. DynamoDB or RDS to store, index and query objects metadata rather then performing operations on S3

Security

  • Use Versioning
    • can be used to protect from unintended overwrites and deletions
    • allows the ability to retrieve and restore deleted objects or rollback to previous versions
  • Enable additional security by configuring a bucket to enable MFA (Multi-Factor Authentication) delete
  • Versioning does not prevent Bucket deletion and must be backed up, as if accidentally or maliciously deleted the data is lost
  • Use Cross Region replication feature to backup data to a different region
  • When using VPC with S3, use VPC S3 endpoints as
    • are horizontally scaled, redundant, and highly available VPC components
    • help establish a private connection between VPC and S3 and the traffic never leaves the Amazon network

Cost

  • Optimize S3 storage cost by selecting an appropriate storage class for objects
  • Configure appropriate lifecycle management rules to move objects to different storage classes and expire them

Tracking

  • Use Event Notifications to be notified for any put or delete request on the S3 objects
  • Use CloudTrail, which helps capture specific API calls made to S3 from the AWS account and delivers the log files to an S3 bucket
  • Use CloudWatch to monitor the Amazon S3 buckets, tracking metrics such as object counts and bytes stored and configure appropriate actions

[do_widget id=text-15]

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. A media company produces new video files on-premises every day with a total size of around 100GB after compression. All files have a size of 1-2 GB and need to be uploaded to Amazon S3 every night in a fixed time window between 3am and 5am. Current upload takes almost 3 hours, although less than half of the available bandwidth is used. What step(s) would ensure that the file uploads are able to complete in the allotted time window?
    1. Increase your network bandwidth to provide faster throughput to S3
    2. Upload the files in parallel to S3 using multipart upload
    3. Pack all files into a single archive, upload it to S3, then extract the files in AWS
    4. Use AWS Import/Export to transfer the video files
  2. You are designing a web application that stores static assets in an Amazon Simple Storage Service (S3) bucket. You expect this bucket to immediately receive over 150 PUT requests per second. What should you do to ensure optimal performance?
    1. Use multi-part upload.
    2. Add a random prefix to the key names.
    3. Amazon S3 will automatically manage performance at this scale.
    4. Use a predictable naming scheme, such as sequential numbers or date time sequences, in the key names
  3. You have an application running on an Amazon Elastic Compute Cloud instance, that uploads 5 GB video objects to Amazon Simple Storage Service (S3). Video uploads are taking longer than expected, resulting in poor application performance. Which method will help improve performance of your application?
    1. Enable enhanced networking
    2. Use Amazon S3 multipart upload
    3. Leveraging Amazon CloudFront, use the HTTP POST method to reduce latency.
    4. Use Amazon Elastic Block Store Provisioned IOPs and use an Amazon EBS-optimized instance
  4. Which of the following methods gives you protection against accidental loss of data stored in Amazon S3? (Choose 2)
    1. Set bucket policies to restrict deletes, and also enable versioning
    2. By default, versioning is enabled on a new bucket so you don’t have to worry about it (Not enabled by default)
    3. Build a secondary index of your keys to protect the data (improves performance only)
    4. Back up your bucket to a bucket owned by another AWS account for redundancy
  5. A startup company hired you to help them build a mobile application that will ultimately store billions of image and videos in Amazon S3. The company is lean on funding, and wants to minimize operational costs, however, they have an aggressive marketing plan, and expect to double their current installation base every six months. Due to the nature of their business, they are expecting sudden and large increases to traffic to and from S3, and need to ensure that it can handle the performance needs of their application. What other information must you gather from this customer in order to determine whether S3 is the right option?
    1. You must know how many customers that company has today, because this is critical in understanding what their customer base will be in two years. (No. of customers do not matter)
    2. You must find out total number of requests per second at peak usage.
    3. You must know the size of the individual objects being written to S3 in order to properly design the key namespace. (Size does not relate to the key namespace design but the count does)
    4. In order to build the key namespace correctly, you must understand the total amount of storage needs for each S3 bucket. (S3 provided unlimited storage the key namespace design would depend on the number)
  6. A document storage company is deploying their application to AWS and changing their business model to support both free tier and premium tier users. The premium tier users will be allowed to store up to 200GB of data and free tier customers will be allowed to store only 5GB. The customer expects that billions of files will be stored. All users need to be alerted when approaching 75 percent quota utilization and again at 90 percent quota use. To support the free tier and premium tier users, how should they architect their application?
    1. The company should utilize an amazon simple workflow service activity worker that updates the users data counter in amazon dynamo DB. The activity worker will use simple email service to send an email if the counter increases above the appropriate thresholds.
    2. The company should deploy an amazon relational data base service relational database with a store objects table that has a row for each stored object along with size of each object. The upload server will query the aggregate consumption of the user in questions (by first determining the files store by the user, and then querying the stored objects table for respective file sizes) and send an email via Amazon Simple Email Service if the thresholds are breached. (Good Approach to use RDS but with so many objects might not be a good option)
    3. The company should write both the content length and the username of the files owner as S3 metadata for the object. They should then create a file watcher to iterate over each object and aggregate the size for each user and send a notification via Amazon Simple Queue Service to an emailing service if the storage threshold is exceeded. (List operations on S3 not feasible)
    4. The company should create two separated amazon simple storage service buckets one for data storage for free tier users and another for data storage for premium tier users. An amazon simple workflow service activity worker will query all objects for a given user based on the bucket the data is stored in and aggregate storage. The activity worker will notify the user via Amazon Simple Notification Service when necessary (List operations on S3 not feasible as well as SNS does not address email requirement)
  7. Your company host a social media website for storing and sharing documents. the web application allow users to upload large files while resuming and pausing the upload as needed. Currently, files are uploaded to your php front end backed by Elastic Load Balancing and an autoscaling fleet of amazon elastic compute cloud (EC2) instances that scale upon average of bytes received (NetworkIn) After a file has been uploaded. it is copied to amazon simple storage service(S3). Amazon Ec2 instances use an AWS Identity and Access Management (AMI) role that allows Amazon s3 uploads. Over the last six months, your user base and scale have increased significantly, forcing you to increase the auto scaling groups Max parameter a few times. Your CFO is concerned about the rising costs and has asked you to adjust the architecture where needed to better optimize costs. Which architecture change could you introduce to reduce cost and still keep your web application secure and scalable?
    1. Replace the Autoscaling launch Configuration to include c3.8xlarge instances; those instances can potentially yield a network throughput of 10gbps. (no info of current size and might increase cost)
    2. Re-architect your ingest pattern, have the app authenticate against your identity provider as a broker fetching temporary AWS credentials from AWS Secure token service (GetFederation Token). Securely pass the credentials and s3 endpoint/prefix to your app. Implement client-side logic to directly upload the file to amazon s3 using the given credentials and S3 Prefix. (will not provide the ability to handle pause and restarts)
    3. Re-architect your ingest pattern, and move your web application instances into a VPC public subnet. Attach a public IP address for each EC2 instance (using the auto scaling launch configuration settings). Use Amazon Route 53 round robin records set and http health check to DNS load balance the app request this approach will significantly reduce the cost by bypassing elastic load balancing. (ELB is not the bottleneck)
    4. Re-architect your ingest pattern, have the app authenticate against your identity provider as a broker fetching temporary AWS credentials from AWS Secure token service (GetFederation Token). Securely pass the credentials and s3 endpoint/prefix to your app. Implement client-side logic that used the S3 multipart upload API to directly upload the file to Amazon s3 using the given credentials and s3 Prefix. (multipart allows one to start uploading directly to S3 before the actual size is known or complete data is downloaded)
  8. If an application is storing hourly log files from thousands of instances from a high traffic web site, which naming scheme would give optimal performance on S3?
    1. Sequential
    2. instanceID_log-HH-DD-MM-YYYY
    3. instanceID_log-YYYY-MM-DD-HH
    4. HH-DD-MM-YYYY-log_instanceID (HH will give some randomness to start with instead of instaneId where the first characters would be i-)
    5. YYYY-MM-DD-HH-log_instanceID

Reference

AWS S3 Subresources

AWS S3 Subresources

  • S3 Subresources provides support to store, and manage the bucket configuration information
  • S3 subresources only exist in the context of a specific bucket or object
  • S3 defines a set of subresources associated with buckets and objects.
  • S3 Subresources are subordinates to objects; that is, they do not exist on their own, they are always associated with some other entity, such as an object or a bucket
  • S3 supports various options to configure a bucket for e.g., bucket can be configured for website hosting, configuration added to manage lifecycle of objects in the bucket, and to log all access to the bucket.

Bucket Subresources

Object Lifecycle

Refer Blog Post S3 Object Lifecycle Management

Static Website hosting

  • S3 can be used for Static Website hosting with Client side scripts.
  • S3 does not support server-side scripting
  • S3, in conjunction with Route 53, supports hosting a website at the root domain which can point to the S3 website endpoint
  • S3 website endpoints do not support HTTPS.
  • For S3 website hosting the content should be made publicly readable which can be provided using a bucket policy or an ACL on an object
  • User can configure the index, error document as well as configure the conditional routing of on object name
  • Bucket policy applies only to objects owned by the bucket owner. If the bucket contains objects not owned by the bucket owner, then public READ permission on those objects should be granted using the object ACL.
  • Requester Pays buckets or DevPay buckets do not allow access through the website endpoint. Any request to such a bucket will receive a 403 -Access Denied response

Versioning

Refer Blog Post S3 Object Versioning

Policy & Access Control List (ACL)

Refer Blog Post S3 Permissions

CORS (Cross Origin Resource Sharing)

  • All browsers implement the Same-Origin policy, for security reasons, where the web page from an domain can only request resources from the same domain.
  • CORS allow client web applications loaded in one domain access to the restricted resources to be requested from another domain
  • With CORS support, S3 allows cross-origin access to S3 resources
  • CORS configuration rules identify the origins allowed to access the bucket, the operations (HTTP methods) that would be supported for each origin, and other operation-specific information

Logging – S3 Access Logs

  • Logging, disabled by default, enables tracking access requests to S3 bucket
  • Each access log record provides details about a single access request, such as the requester, bucket name, request time, request action, response status, and error code, if any.
  • Access log information can be useful in security and access audits and also help learn about the customer base and understand the S3 bill
  • S3 periodically collects access log records, consolidates the records in log files, and then uploads log files to a target bucket as log objects.
  • If logging is enabled on multiple source buckets with same target bucket, the target bucket will have access logs for all those source buckets, but each log object will report access log records for a specific source bucket

Tagging

  • S3 provides the tagging subresource to store and manage tags on a bucket
  • Cost allocation tags can be added to the bucket to categorize and track AWS costs
  • AWS can generate a cost allocation report with usage and costs aggregated by the tags applied to the buckets

Location

  • When you create a bucket, AWS region needs to be specified where the S3 bucket will be created
  • S3 stores this information in the location subresource and provides an API for retrieving this information

Notification

  • S3 notification feature enables notifications to be triggered when certain events happen in your bucket
  • Notifications are enabled at Bucket level
  • Notifications can be configured to be filtered by the prefix and suffix of the key name of objects. However, filtering rules cannot be defined with  overlapping prefixes, overlapping suffixes, or prefix and suffix overlapping
  • S3 can publish the following events
    • New Objects created event
      • Can be enabled for PUT, POST or COPY operations
      • You will not receive event notifications from failed operations
    • Object Removal event
      • Can public delete events for object deletion, version object deletion or insertion of delete marker
      • You will not receive event notifications from automatic deletes from lifecycle policies or from failed operations.
    • Reduced Redundancy Storage (RRS) object lost event
      • Can be used to reproduce/recreate the Object
  • S3 can publish events to the following destination
    • SNS topic
    • SQS queue
    • AWS Lambda
  • For S3 to be able to publish events to the destination, S3 principal should be granted necessary permissions

Cross Region Replication

  • Cross-region replication is a bucket-level feature that enables automatic, asynchronous copying of objects across buckets in different AWS regions
  • S3 can replicate all or a subset of objects with specific key name prefixes
  • S3 encrypts all data in transit across AWS regions using SSL
  • Object replicas in the destination bucket are exact replicas of the objects in the source bucket with the same key names and the same metadata.
  • Cross Region Replication can be useful for the following scenarios :-
    • Compliance requirement to have data backed up across regions
    • Minimize latency to allow users across geography to access objects
    • Operational reasons compute clusters in two different regions that analyze the same set of objects
  • Requirements
    • source and destination buckets must be versioning-enabled
    • source and destination buckets must be in different AWS regions
    • objects can be replicated from a source bucket to only one destination bucket
    • S3 must have permission to replicate objects from that source bucket to the destination bucket on your behalf.
    • If the source bucket owner also owns the object, the bucket owner has full permissions to replicate the object. If not, the source bucket owner must have permission for the S3 actions s3:GetObjectVersion and s3:GetObjectVersionACL to read the object and object ACL
    • Setting up cross-region replication in a cross-account scenario (where the source and destination buckets are owned by different AWS accounts), the source bucket owner must have permission to replicate objects in the destination bucket.
  • Replicated & Not Replicated
    • S3 does not retroactively replicate objects that existed before you added replication configuration. Only new objects created after you add a replication configuration are replicated
    • Only Objects created with SSE-S3 are replicated using server-side encryption using the S3-managed encryption key.
    • Objects created with server-side encryption using either customer-provided (SSE-C) are replicated
    • Objects created with server-side encryption using AWS KMS–managed encryption (SSE-KMS) keys are not replicated, by default. It requires additional handling.
    • S3 replicates only objects in the source bucket for which the bucket owner has permission to read objects and read ACLs
    • S3 does not replicate objects in the source bucket for which the bucket owner does not have permissions.
    • Any object ACL updates are replicated, although there can be some delay before Amazon S3 can bring the two in sync. This applies only to objects created after you add a replication configuration to the bucket.
    • Updates to bucket-level S3 subresources are not replicated, allowing different bucket configurations on the source and destination buckets
    • Only customer actions are replicated & actions performed by lifecycle configuration are not replicated
    • Objects in the source bucket that are replicas, created by another cross-region replication, are not replicated.

Requester Pays

  • By default, buckets are owned by the AWS account that created it (the bucket owner) and the AWS account pays for storage costs, downloads and data transfer charges associated with the bucket.
  • Using Requester Pays subresource :-
    • Bucket owner specifies that the requester requesting the download will be charged for the download
    • However, the bucket owner still pays the storage costs
  • Enabling Requester Pays on a bucket
    • disables anonymous access to that bucket
    • does not support BitTorrent
    • does not support SOAP requests
    • cannot be enabled for end user logging bucket

Object Subresources

Torrent

  • Default distribution mechanism for S3 data is via client/server download
  • Bucket owner bears the cost of Storage as well as the request and transfer charges which can increase linearly for an popular object
  • S3 also supports the BitTorrent protocol
    • BitTorrent is an open source Internet distribution protocol
    • BitTorrent addresses this problem by recruiting the very clients that are downloading the object as distributors themselves
    • S3 bandwidth rates are inexpensive, but BitTorrent allows developers to further save on bandwidth costs for a popular piece of data by letting users download from Amazon and other users simultaneously
  • Benefit for publisher is that for large, popular files the amount of data actually supplied by S3 can be substantially lower than what it would have been serving the same clients via client/server download
  • Any object in S3 that is publicly available and can be read anonymously can be downloaded via BitTorrent
  • torrent file can be retrieved for any publicly available object by simply adding a “?torrent” query string parameter at the end of the REST GET request for the object
  • Generating the .torrent for an object takes time proportional to the size of that object, so its recommended to make a first torrent request yourself to generate the file so that subsequent requests are faster
  • Torrent are enabled only for objects that are less than 5 GB in size.
  • Torrent subresource can only be retrieve, and cannot be created, updated or deleted

Object ACL

Refer Blog Post S3 Permissions

[do_widget id=text-15]

AWS Certification Exam Practice Questions

  • Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
  • AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
  • AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
  • Open to further feedback, discussion and correction.
  1. An organization’s security policy requires multiple copies of all critical data to be replicated across at least a primary and backup data center. The organization has decided to store some critical data on Amazon S3. Which option should you implement to ensure this requirement is met?
    1. Use the S3 copy API to replicate data between two S3 buckets in different regions
    2. You do not need to implement anything since S3 data is automatically replicated between regions
    3. Use the S3 copy API to replicate data between two S3 buckets in different facilities within an AWS Region
    4. You do not need to implement anything since S3 data is automatically replicated between multiple facilities within an AWS Region
  2. A customer wants to track access to their Amazon Simple Storage Service (S3) buckets and also use this information for their internal security and access audits. Which of the following will meet the Customer requirement?
    1. Enable AWS CloudTrail to audit all Amazon S3 bucket access.
    2. Enable server access logging for all required Amazon S3 buckets
    3. Enable the Requester Pays option to track access via AWS Billing
    4. Enable Amazon S3 event notifications for Put and Post.
  3. A user is enabling a static website hosting on an S3 bucket. Which of the below mentioned parameters cannot be configured by the user?
    1. Error document
    2. Conditional error on object name
    3. Index document
    4. Conditional redirection on object name
  4. Company ABCD is running their corporate website on Amazon S3 accessed from http//www.companyabcd.com. Their marketing team has published new web fonts to a separate S3 bucket accessed by the S3 endpoint: https://s3-us-west1.amazonaws.com/abcdfonts. While testing the new web fonts, Company ABCD recognized the web fonts are being blocked by the browser. What should Company ABCD do to prevent the web fonts from being blocked by the browser?
    1. Enable versioning on the abcdfonts bucket for each web font
    2. Create a policy on the abcdfonts bucket to enable access to everyone
    3. Add the Content-MD5 header to the request for webfonts in the abcdfonts bucket from the website
    4. Configure the abcdfonts bucket to allow cross-origin requests by creating a CORS configuration
  5. Company ABCD is currently hosting their corporate site in an Amazon S3 bucket with Static Website Hosting enabled. Currently, when visitors go to http://www.companyabcd.com the index.html page is returned. Company C now would like a new page welcome.html to be returned when a visitor enters http://www.companyabcd.com in the browser. Which of the following steps will allow Company ABCD to meet this requirement? Choose 2 answers.
    1. Upload an html page named welcome.html to their S3 bucket
    2. Create a welcome subfolder in their S3 bucket
    3. Set the Index Document property to welcome.html
    4. Move the index.html page to a welcome subfolder
    5. Set the Error Document property to welcome.html