Table of Contents
hide
AWS Simple Queue Service – SQS
- Simple Queue Service – SQS is a highly available distributed queue system
- A queue is a temporary repository for messages awaiting processing and acts as a buffer between the component producer and the consumer
- is a message queue service used by distributed applications to exchange messages through a polling model, and can be used to decouple sending and receiving components.
- is fully managed and requires no administrative overhead and little configuration
- offers a reliable, highly-scalable, hosted queue for storing messages in transit between applications.
- provides fault-tolerant, loosely coupled, flexibility of distributed components of applications to send & receive without requiring each component to be concurrently available
- helps build distributed applications with decoupled components
- supports encryption at rest and encryption in transit using the HTTP over SSL (HTTPS) and Transport Layer Security (TLS) protocols for security.
- provides two types of Queues
SQS Standard Queue
- Standard queues are the default queue type.
- Standard queues support at-least-once message delivery. However, occasionally (because of the highly distributed architecture that allows nearly unlimited throughput), more than one copy of a message might be delivered out of order.
- Standard queues support a nearly unlimited number of API calls per second, per API action (
SendMessage
,ReceiveMessage
, orDeleteMessage
). - Standard queues provide best-effort ordering which ensures that messages are generally delivered in the same order as they’re sent.
Refer SQS Standard Queue for detailed information
SQS FIFO Queue
- FIFO (First-In-First-Out) queues provide messages in order and exactly once delivery.
- FIFO queues have all the capabilities of the standard queues but are designed to enhance messaging between applications when the order of operations and events is critical, or where duplicates can’t be tolerated.
Refer SQS FIFO Queue for detailed information
SQS Standard Queues vs SQS FIFO Queues
SQS Use Cases
- Work Queues
- Decouple components of a distributed application that may not all process the same amount of work simultaneously.
- Buffer and Batch Operations
- Add scalability and reliability to the architecture and smooth out temporary volume spikes without losing messages or increasing latency
- Request Offloading
- Move slow operations off of interactive request paths by enqueueing the request.
- Fan-out
- Combine SQS with SNS to send identical copies of a message to multiple queues in parallel for simultaneous processing.
- Auto Scaling
- SQS queues can be used to determine the load on an application, and combined with Auto Scaling, the EC2 instances can be scaled in or out, depending on the volume of traffic
How SQS Queues Works
- SQS allows queues to be created, deleted and messages can be sent and received from it
- SQS queue retains messages for four days, by default.
- Queues can be configured to retain messages for 1 minute to 14 days after the message has been sent.
- SQS can delete a queue without notification if any action hasn’t been performed on it for 30 consecutive days.
- SQS allows the deletion of the queue with messages in it
SQS Features & Capabilities
- Visibility timeout defines the period where SQS blocks the visibility of the message and prevents other consuming components from receiving and processing that message.
- SQS Dead-letter queues – DLQ helps source queues (Standard and FIFO) target messages that can’t be processed (consumed) successfully.
- DLQ Redrive policy specifies the source queue, the dead-letter queue, and the conditions under which SQS moves messages from the former to the latter if the consumer of the source queue fails to process a message a specified number of times.
- SQS Short and Long polling control how the queues would be polled and Long polling help reduce empty responses.
SQS Buffered Asynchronous Client
- Amazon SQS Buffered Async Client for Java provides an implementation of the AmazonSQSAsyncClient interface and adds several important features:
- Automatic batching of multiple SendMessage, DeleteMessage, or ChangeMessageVisibility requests without any required changes to the application
- Prefetching of messages into a local buffer that allows the application to immediately process messages from SQS without waiting for the messages to be retrieved
- Working together, automatic batching and prefetching increase the throughput and reduce the latency of the application while reducing the costs by making fewer SQS requests.
SQS Security and reliability
- SQS stores all message queues and messages within a single, highly-available AWS region with multiple redundant Availability Zones (AZs)
- SQS supports HTTP over SSL (HTTPS) and Transport Layer Security (TLS) protocols.
- SQS supports Encryption at Rest. SSE encrypts messages as soon as SQS receives them and decrypts messages only when they are sent to an authorized consumer.
- SQS also supports resource-based permissions
SQS Design Patterns
Priority Queue Pattern
- Use SQS to prepare multiple queues for the individual priority levels.
- Place those processes to be executed immediately (job requests) in the high priority queue.
- Prepare numbers of batch servers, for processing the job requests of the queues, depending on the priority levels.
- Queues have a message “Delayed Send” function, which can be used to delay the time for starting a process.
SQS Job Observer Pattern
- Enqueue job requests as SQS messages.
- Have the batch server dequeue and process messages from SQS.
- Set up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with CloudWatch, as the trigger to do so.
SQS vs Kinesis Data Streams
AWS Certification Exam Practice Questions
- Questions are collected from Internet and the answers are marked as per my knowledge and understanding (which might differ with yours).
- AWS services are updated everyday and both the answers and questions might be outdated soon, so research accordingly.
- AWS exam questions are not updated to keep up the pace with AWS updates, so even if the underlying feature has changed the question might not be updated
- Open to further feedback, discussion and correction.
- Which AWS service can help design architecture to persist in-flight transactions?
- Elastic IP Address
- SQS
- Amazon CloudWatch
- Amazon ElastiCache
- A company has a workflow that sends video files from their on-premise system to AWS for transcoding. They use EC2 worker instances that pull transcoding jobs from SQS. Why is SQS an appropriate service for this scenario?
- SQS guarantees the order of the messages.
- SQS synchronously provides transcoding output.
- SQS checks the health of the worker instances.
- SQS helps to facilitate horizontal scaling of encoding tasks
- Which statement best describes an Amazon SQS use case?
- Automate the process of sending an email notification to administrators when the CPU utilization reaches 70% on production servers (Amazon EC2 instances) (CloudWatch + SNS + SES)
- Create a video transcoding website where multiple components need to communicate with each other, but can’t all process the same amount of work simultaneously (SQS provides loose coupling)
- Coordinate work across distributed web services to process employee’s expense reports (SWF – Steps in order and might need manual steps)
- Distribute static web content to end users with low latency across multiple countries (CloudFront + S3)
- Your application provides data transformation services. Files containing data to be transformed are first uploaded to Amazon S3 and then transformed by a fleet of spot EC2 instances. Files submitted by your premium customers must be transformed with the highest priority. How should you implement such a system?
- Use a DynamoDB table with an attribute defining the priority level. Transformation instances will scan the table for tasks, sorting the results by priority level.
- Use Route 53 latency based-routing to send high priority tasks to the closest transformation instances.
- Use two SQS queues, one for high priority messages, and the other for default priority. Transformation instances first poll the high priority queue; if there is no message, they poll the default priority queue
- Use a single SQS queue. Each message contains the priority level. Transformation instances poll high-priority messages first.
- Your company plans to host a large donation website on Amazon Web Services (AWS). You anticipate a large and undetermined amount of traffic that will create many database writes. To be certain that you do not drop any writes to a database hosted on AWS. Which service should you use?
- Amazon RDS with provisioned IOPS up to the anticipated peak write throughput.
- Amazon Simple Queue Service (SQS) for capturing the writes and draining the queue to write to the database
- Amazon ElastiCache to store the writes until the writes are committed to the database.
- Amazon DynamoDB with provisioned write throughput up to the anticipated peak write throughput.
- A customer has a 10 GB AWS Direct Connect connection to an AWS region where they have a web application hosted on Amazon Elastic Computer Cloud (EC2). The application has dependencies on an on-premises mainframe database that uses a BASE (Basic Available, Soft state, Eventual consistency) rather than an ACID (Atomicity, Consistency, Isolation, Durability) consistency model. The application is exhibiting undesirable behavior because the database is not able to handle the volume of writes. How can you reduce the load on your on-premises database resources in the most cost-effective way?
- Use an Amazon Elastic Map Reduce (EMR) S3DistCp as a synchronization mechanism between the onpremises database and a Hadoop cluster on AWS.
- Modify the application to write to an Amazon SQS queue and develop a worker process to flush the queue to the on-premises database
- Modify the application to use DynamoDB to feed an EMR cluster which uses a map function to write to the on-premises database.
- Provision an RDS read-replica database on AWS to handle the writes and synchronize the two databases using Data Pipeline.
- An organization has created a Queue named “modularqueue” with SQS. The organization is not performing any operations such as SendMessage, ReceiveMessage, DeleteMessage, GetQueueAttributes, SetQueueAttributes, AddPermission, and RemovePermission on the queue. What can happen in this scenario?
- AWS SQS sends notification after 15 days for inactivity on queue
- AWS SQS can delete queue after 30 days without notification
- AWS SQS marks queue inactive after 30 days
- AWS SQS notifies the user after 2 weeks and deletes the queue after 3 weeks.
- A user is using the AWS SQS to decouple the services. Which of the below mentioned operations is not supported by SQS?
- SendMessageBatch
- DeleteMessageBatch
- CreateQueue
- DeleteMessageQueue
- A user has created a queue named “awsmodule” with SQS. One of the consumers of queue is down for 3 days and then becomes available. Will that component receive message from queue?
- Yes, since SQS by default stores message for 4 days
- No, since SQS by default stores message for 1 day only
- No, since SQS sends message to consumers who are available that time
- Yes, since SQS will not delete message until it is delivered to all consumers
- A user has created a queue named “queue2” in US-East region with AWS SQS. The user’s AWS account ID is 123456789012. If the user wants to perform some action on this queue, which of the below Queue URL should he use?
- http://sqs.us-east-1.amazonaws.com/123456789012/queue2
- http://sqs.amazonaws.com/123456789012/queue2
- http://sqs. 123456789012.us-east-1.amazonaws.com/queue2
- http://123456789012.sqs.us-east-1.amazonaws.com/queue2
- A user has created a queue named “myqueue” with SQS. There are four messages published to queue, which are not received by the consumer yet. If the user tries to delete the queue, what will happen?
- A user can never delete a queue manually. AWS deletes it after 30 days of inactivity on queue
- It will delete the queue
- It will initiate the delete but wait for four days before deleting until all messages are deleted automatically.
- I t will ask user to delete the messages first
- A user has developed an application, which is required to send the data to a NoSQL database. The user wants to decouple the data sending such that the application keeps processing and sending data but does not wait for an acknowledgement of DB. Which of the below mentioned applications helps in this scenario?
- AWS Simple Notification Service
- AWS Simple Workflow
- AWS Simple Queue Service
- AWS Simple Query Service
- You are building an online store on AWS that uses SQS to process your customer orders. Your backend system needs those messages in the same sequence the customer orders have been put in. How can you achieve that?
- It is not possible to do this with SQS
- You can use sequencing information on each message
- You can do this with SQS but you also need to use SWF
- Messages will arrive in the same order by default
- A user has created a photo editing software and hosted it on EC2. The software accepts requests from the user about the photo format and resolution and sends a message to S3 to enhance the picture accordingly. Which of the below mentioned AWS services will help make a scalable software with the AWS infrastructure in this scenario?
- AWS Glacier
- AWS Elastic Transcoder
- AWS Simple Notification Service
- AWS Simple Queue Service
- Refer to the architecture diagram of a batch processing solution using Simple Queue Service (SQS) to set up a message queue between EC2 instances, which are used as batch processors. Cloud Watch monitors the number of Job requests (queued messages) and an Auto Scaling group adds or deletes batch servers automatically based on parameters set in Cloud Watch alarms. You can use this architecture to implement which of the following features in a cost effective and efficient manner?
- Reduce the overall time for executing jobs through parallel processing by allowing a busy EC2 instance that receives a message to pass it to the next instance in a daisy-chain setup.
- Implement fault tolerance against EC2 instance failure since messages would remain in SQS and worn can continue with recovery of EC2 instances implement fault tolerance against SQS failure by backing up messages to S3.
- Implement message passing between EC2 instances within a batch by exchanging messages through SOS.
- Coordinate number of EC2 instances with number of job requests automatically thus Improving cost effectiveness
- Handle high priority jobs before lower priority jobs by assigning a priority metadata field to SQS messages.
- How does Amazon SQS allow multiple readers to access the same message queue without losing messages or processing them many times?
- By identifying a user by his unique id
- By using unique cryptography
- Amazon SQS queue has a configurable visibility timeout
- Multiple readers can’t access the same message queue
- A user has created photo editing software and hosted it on EC2. The software accepts requests from the user about the photo format and resolution and sends a message to S3 to enhance the picture accordingly. Which of the below mentioned AWS services will help make a scalable software with the AWS infrastructure in this scenario?
- AWS Elastic Transcoder
- AWS Simple Notification Service
- AWS Simple Queue Service
- AWS Glacier
- How do you configure SQS to support longer message retention?
- Set the MessageRetentionPeriod attribute using the SetQueueAttributes method
- Using a Lambda function
- You can’t. It is set to 14 days and cannot be changed
- You need to request it from AWS
- A user has developed an application, which is required to send the data to a NoSQL database. The user wants to decouple the data sending such that the application keeps processing and sending data but does not wait for an acknowledgement of DB. Which of the below mentioned applications helps in this scenario?
- AWS Simple Notification Service
- AWS Simple Workflow
- AWS Simple Query Service
- AWS Simple Queue Service
- If a message is retrieved from a queue in Amazon SQS, how long is the message inaccessible to other users by default?
- 0 seconds
- 1 hour
- 1 day
- forever
- 30 seconds
- Which of the following statements about SQS is true?
- Messages will be delivered exactly once and messages will be delivered in First in, First out order
- Messages will be delivered exactly once and message delivery order is indeterminate
- Messages will be delivered one or more times and messages will be delivered in First in, First out order
- Messages will be delivered one or more times and message delivery order is indeterminate (Before the introduction of FIFO queues)
- How long can you keep your Amazon SQS messages in Amazon SQS queues?
- From 120 secs up to 4 weeks
- From 10 secs up to 7 days
- From 60 secs up to 2 weeks
- From 30 secs up to 1 week
- When a Simple Queue Service message triggers a task that takes 5 minutes to complete, which process below will result in successful processing of the message and remove it from the queue while minimizing the chances of duplicate processing?
- Retrieve the message with an increased visibility timeout, process the message, delete the message from the queue
- Retrieve the message with an increased visibility timeout, delete the message from the queue, process the message
- Retrieve the message with increased DelaySeconds, process the message, delete the message from the queue
- Retrieve the message with increased DelaySeconds, delete the message from the queue, process the message
- You need to process long-running jobs once and only once. How might you do this?
- Use an SNS queue and set the visibility timeout to long enough for jobs to process.
- Use an SQS queue and set the reprocessing timeout to long enough for jobs to process.
- Use an SQS queue and set the visibility timeout to long enough for jobs to process.
- Use an SNS queue and set the reprocessing timeout to long enough for jobs to process.
- You are getting a lot of empty receive requests when using Amazon SQS. This is making a lot of unnecessary network load on your instances. What can you do to reduce this load?
- Subscribe your queue to an SNS topic instead.
- Use as long of a poll as possible, instead of short polls. (Refer link)
- Alter your visibility timeout to be shorter.
- Use <code>sqsd</code> on your EC2 instances.
- You have an asynchronous processing application using an Auto Scaling Group and an SQS Queue. The Auto Scaling Group scales according to the depth of the job queue. The completion velocity of the jobs has gone down, the Auto Scaling Group size has maxed out, but the inbound job velocity did not increase. What is a possible issue?
- Some of the new jobs coming in are malformed and unprocessable. (As other options would cause the job to stop processing completely, the only reasonable option seems that some of the recent messages must be malformed and unprocessable)
- The routing tables changed and none of the workers can process events anymore. (If changed, none of the jobs would be processed)
- Someone changed the IAM Role Policy on the instances in the worker group and broke permissions to access the queue. (If IAM role changed no jobs would be processed)
- The scaling metric is not functioning correctly. (scaling metric did work fine as the autoscaling caused the instances to increase)
- Company B provides an online image recognition service and utilizes SQS to decouple system components for scalability. The SQS consumers poll the imaging queue as often as possible to keep end-to-end throughput as high as possible. However, Company B is realizing that polling in tight loops is burning CPU cycles and increasing costs with empty responses. How can Company B reduce the number of empty responses?
- Set the imaging queue visibility Timeout attribute to 20 seconds
- Set the Imaging queue ReceiveMessageWaitTimeSeconds attribute to 20 seconds (Long polling. Refer link)
- Set the imaging queue MessageRetentionPeriod attribute to 20 seconds
- Set the DelaySeconds parameter of a message to 20 seconds
Question(9)
is not answered.
Formatting issues corrected the same
I believe the answer to Question #9 should be “C” since it says “one of the consumers” is not available for 3 days. That means that there are other consumers for the message that would have received and processed the message.
agree, but what is the guarantee that, the message is processed by available consumers at that time? As the question do not explicitly mentions that the message is processed, its not good idea to image its processed. Hence answer A is correct
Question 23: The answer is A. You have to process the message before deleting it from the queue to ensure successful message processing.
Thanks for pointing it out … have corrected the same …
Using SQS we can decouple the components of an application so they run independently….Hi sir here what are the components of an application….? is it data decoupling . What I believe is the consumers are the application components and they process the messages…
Please explain me Sir? I have seen data coupling in question 12…and get confused
Dear Jayendra,
“..messages larger than 256 KB can be managed using the ‘SQS’ or DynamoDB with SQS storing pointer..”. I think there is an error, should be “using the ‘S3’ or DynamoDB with SQS storing..”.
Thats right, corrected the same. It should be S3 or DynamoDB with SQS holding the pointer only.
Dear Jayendra,
With reference to: “SQS can delete a queue without notification if one of the following actions hasn’t been performed on it for 30 consecutive days.’
This left reader hanging in the air. Maybe it should be; “Queue can be deleted by AWS without notification if there is no actions performed on it for 30 consecutive days. As this is a violation of the intended use of Amazon SQS if you repeatedly create queues and then leave them inactive.”
Thanks YewHang, have corrected the same. It actually gathered from other sources and copied as is 🙂
Dear Jayendra,
BASE = Basic Available. “Sort” stale Eventual consistency. (“Sort” should be “Soft”)
Questions 14 and 17, 12 and 19 look repeated.
Hello Jayendra,
Heres a question from Udemy that I cant figure out:
You manage an application that uses EC2 instances and SQS to process requests from end users. There are no known issues with your application, but your supervisor is concerned about the cost of the AWS resources it uses. Which of the following would NOT help address that concern?
Use Auto-Scaling to adjust the number of EC2 Instances according to demand from SQS
Increase the visibility timeout for messages in the queue
Decrease the size of SQS Messages to 50kb
Switch from Short Polling to Long Polling
The correct Answer is ‘Increase the visibility timeout for messages in the queue’. While I can understand why that would be a correct answer, but I am not clear on how ‘Decreasing the size of SQS Messages to 50kb’ would help reduce cost?
Appreciate your help!
Thanks,
Divya
Refer SQS Pricing @ https://aws.amazon.com/sqs/pricing/
Each 64 KB chunk of a payload is billed as 1 request (for example, an API action with a 256 KB payload is billed as 4 requests).
So a message size of 65KB is actually 2 requests.
When designing an Amazon SQS message-processing solution, messages in the queue must be processed before the maximum retention time has elapsed.Which actions will meet this requirement?
A. Use AWS STS to process the messages
B. Use Amazon EBS-optimized Amazon EC2 instances to process the messages
C. Use Amazon EC2 instances in an Auto Scaling group with scaling triggered based on the queue length
D. Increase the SQS queue attribute for the message retention period
E. Convert the SQS queue to a first-in first-out (FIFO) queue
My answer is – A and E , please let me know if I am wrong ?
Option C – Auto Scaling works as the group is scaled as the queue length to process faster.
STS is security token service, so doesn’t add any value.
EBS Optimized would not help improve performance.
Increasing retention period is possible, but the problem is by how much.
SQS FIFO reduce processing rate to 300, and would reduce the processing rate.
Are these questions above relevant to CCP cert or for higher level certs?
its a mixed bag relevant to the topic, SK.